
De v e lo p me n t To o l s

UDE Trace SupportUDE Trace Support
UDE Trace Data Visualization and Analyzing
Inherently, hard real-time and multicore applications with parallel code execution do not allow influencing the runtime behavior during
debugging. Trace is a suitable and powerful method to debug and analyze these types of applications. It allows non-intrusive
observation – without influencing the run-time behavior – and also records exactly the time sequence of program execution or other
parameters. Among other things, tracing enables the investigation of timing problems or misbehavior caused by parallel execution.

Based on the recorded trace information the Universal Debug Engine® UDE provides a variety of analysis functions and visualizations
helping developers to perform debug tasks, run-time-analysis and system-level-analysis.

Trace Window
The Trace Window shows the captured trace data in tabular
form and provides an precise reproduction of the program flow.

 Support for different trace sources depending on the
device-specific trace system (multiple cores, busses,
peripherals, etc.)

 Core-specific coloring and filtering of trace information

 Easy navigation to source code

 Highly configurable

 Fast search function for searching the entire trace recording

Execution Sequence Chart
The Execution Sequence Chart visualizes the program flow and
its timing and is the perfect tool to find bottlenecks or
synchronization problems in software that is executed in
parallel on a multicore system.

 Exact temporal display of the executed tasks and functions

 Call-depth for every point in time

 Visualization of execution sequence for multicore
applications

 Easy and fast navigation and zoom

 Time measurement between user-definable markers

Call Graph Analysis and Profiling
The Call Graph Analysis creates a representation of the control
flow at software level. It represents the calling relationships
between functions and sub-functions.

 Dynamic call graph. Each subroutine call is treated as a
unique event unless the same subroutine is called again
from the same call stack parent

 Static call graph. All calls to a subroutine are accumulated
regardless of caller relationship

 Profiling information and statistics about runtime behavior

 Total, minimum, maximum and average execution time

 Number of calls and returns

De v e lo p me n t To o l s

If you have any questions about our products, please feel free to contact us:

PLS Programmierbare Logik & Systeme GmbH PLS Development Tools
Technologiepark Lauta 10080 N. Wolfe Rd., Suite SW3-200
D-02991 Lauta Cupertino, CA 95014
Germany USA
Phone: + 49 35722 384 - 0 Phone: +1-949-863-0327

Toll Free: +1-877-77-DEBUG
www.pls-mc.com
info@pls-mc.com 2023_1207

UDE Trace SupportUDE Trace Support

Your local partner:

Supported Trace Sources

MCDS/miniMCDS for Infineon
AURIX / TriCore

IEEE-ISTO 5001 Nexus for
NXP MPC5xxx, ST SPC5

Arm CoreSight (ETM, ETB,
TMC, ITM, PTM, FTM) for Arm
Cortex A/R/M based devices

Supported Trace Interfaces

Serial AURORA trace

Arm HSSTP

Nexus parallel trace

Arm parallel trace

Arm SWO

On-Chip trace buffers, trace
data to be transferred by
standard debug interface

Trace Recording
UDE provides powerful capabilities for recording trace data from a variety of trace sources, including on-chip trace memories and
various external trace interfaces for single and multicore SoCs and microcontrollers.

UAD2next – Combining debugging and trace

 Easy mounting plug-in modules for a
wide range of trace interfaces

 AURORA serial high-speed trace with
up to 1.25 Gbit/s

 Parallel trace with up to
12 bit @ 125 MHz DDR

 512 Mbyte trace memory

UAD3+ – High end trace pushing the limits

 Separate Trace Pod connected to UAD3+
by a gigabit serial multi-lane cable
(length up to 5 meters)

 AURORA serial high-speed trace with up
to 12.5 Gbit/s

 Parallel trace with up to
20 bit @ 500 MHz Up to 8 Gbyte trace
memory

Code Coverage Support
The trace-based Code Coverage Support in UDE is a non-
intrusive method that allows to determine the statement
coverage (C0 coverage) and branch coverage (C1 coverage) even
with optimized code. No code instrumentation is required.

 Line markers in the program window indicating fully
covered, partially covered, and uncovered source lines and
statements

 Code Coverage Window with detailed information and bar
chart for C0 and C1 coverage

