
A Software Guide to

UDE® Universal Debug Engine

Debugging, Trace and Test for
Embedded Systems

Integrated Development Environment
for 64-, 32-, 16-bit Microcontrollers and Embedded Processors

AURIX, TriCore, Arm Cortex-M/R/A, Arm7/9/11, S32G/S/V,
Stellar G/P/E, RH850, R-Car, RISC-V, ARC, Power Architecture

 PLS 1991-2025 V 2025.1.5

This manual contains 193 pages.

Contact us at:

E-Mail: support@pls-mc.com

 info@pls-mc.com

WWW: https://www.pls-mc.com

PLS Programmierbare Logik & Systeme GmbH PLS Development Tools

Technologiepark Lauta 10080 N. Wolfe Rd., Suite SW3-200

DE-02991 Lauta Cupertino, CA 95014

Germany USA

Phone: + 49 35722 384 - 0 Phone: +1-949-863-0327

 Toll Free: +1-877-77-DEBUG

All rights reserved. No part of this manual may be reproduced or may be transmitted in any form or by any
means without prior written permission of PLS Programmierbare Logik & Systeme GmbH (PLS). The
information in this manual is subject to change without notice, no responsibility is assumed for its use.

UDE® Universal Debug Engine is a trademark of PLS Programmierbare Logik & Systeme GmbH. Adobe
is a registered trademark of Adobe Systems Incorporated. AURIX™, TriCore™ are trademarks of Infineon

AG. ARM7™, ARM9™, ARM11™, Cortex™ are trademarks of ARM. PowerPC is a registered trademark

of IBM Corporation, Power Architecture™ is a trademark of IBM Corporation. RISC-V is a registered

trademark of RISC-V International. ARC is a registered trademark of Synopsys. Windows10,

Windows11 are trademarks of Microsoft Corporation. Pentium and Core™ are trademarks of Intel

Corporation. XScale, Celeron are registered trademarks of Intel Corporation. Athlon™ is a trademark of
Advanced Micro Devices, Inc. SuperH™ is a trademark of Renesas Technology Corporation.
All other names and trademarks are the property of their respective owners.

PLS reserves the right to make technical changes to the equipment or changes to this document without any
prior notice.

mailto:support@pls-mc.com
mailto:info@pls-mc.com
https://www.pls-mc.com/

Introduction Overview 3 of 193

Contents

Introduction 9

Overview 9
Feedback 9
Safety Instructions for Products and Equipment 10

Regulatory Compliance and Compliance Statements 10
Software 11
Electrical Safety Instructions 11
Mechanical Safety Instructions 12
Safety Instructions 13

Versions of UDE® 14
Delivery Contents 15
System Requirements 17

Dependencies 17
Additional requirements 17

Installing of UDE® Universal Debug Engine 18

Installation Notes - Before you install UDE® 18
Installing UDE® Software 19

Working with the CD browser 19
Download the latest UDE® Release from Website 19
Start the UDE® Installation 21

Installing Hardware 22
Static Electricity Precautions 22
Standard Version UAD2pro (via JTAG/DAP/SWD) 23
Standard Version UAD2pro (via ASC, CAN) 24
Standard Version UAD2+ (via JTAG/DAP/SWD) 25
Standard Version UAD2+ (via ASC, SSC, CAN) 26
Standard Version UAD2+ (via 3Pin) 27
Standard Version UAD2next (via JTAG/DAP/SWD) 28
Standard Version UAD2next (with Trace support) 29
Standard Version UAD3+ (via JTAG/DAP/SWD) 30
Standard Version UAD3+ (with Aurora Trace support) 31
Simulator Version (TSim) 32
Standard Version XCP (via Ethernet)) 32
UAD-JTAG Protector 2 for UAD2+ 33

Driver Installation for Universal Access Device 34
UAD2+ via IEEE1394 34
UAD3+ via IEEE1394b 35
UAD2pro, UAD2+, UAD2next, UAD3+ via USB port 36
UAD2+, UAD2next, UAD3+ via Ethernet TCP/IP 37

Driver Installation for USB-Key (Sentinel USB SuperPro) 40
USB-Key via USB port 40

License Manager 41
Node-locked licensing 42

How to get the Host ID of UDE® Installation 42
Setup of Node-Locked License File 44

Uninstalling or Reinstalling UDE® 45
Find out about the latest UDE® version 45
Trouble Shooting 47

Frequently Asked Questions (FAQ’s) 47
Precautions when installing a new UDE® version 47

4 of 193 Overview Introduction

Downloading the latest UDE® Version 47
Reporting a Problem in UDE® 47
Known Issues 47

Getting Started 48

Examples delivered with UDE® 48
An Example with AURIX TC3xx 49

Precautions 49
Starting UDE® Universal Debug Engine 49
Loading a AURIX Executable 51
Binary and Symbols 51
Running and Stepping through the Application 53
Setting Breakpoints 54
Core Registers 55
Peripheral Registers 55
Viewing Variables 56
Viewing Memory Locations 57
Leaving the Project 57

An Example with AURIX TC3xx via XCP 58
Creating a new Workspace 58

A Multi-Core Debugging Example with TriCore/PCP 60
Creating a New Workspace with changed configuration 60
Running the Program 61
HelloPCP Internals 61

A Multi-Core Debugging Example with AURIX TC2xx 62
Understanding a Multi-Core Configuration 62
Creating a New Workspace 62
Preparing the Debugger 64
Show, Hide and Group Windows-Related Perspectives 65
Loading a Multi-Core Executable 65
FLASH programming 67
Core Selection 69
Single-Core Breakpoints in a multi-core environment 70
Multi-Core Breakpoints 71

An AURIX TC49x/PPU Debugging Example 72
Preparations 72
Getting Started 72
Multi-Core Run Control 74
Program Execution Time Measurement 74
Additional hints for PPU debugging with breakpoints: 75

A Multi-Core GTM Debugging Example with Power Architecture SPC58NG 76
Creating a New Workspace 76
Preparing the debugger 77
Loading a Multi-Core Executable 77
Core selection 79
Single-Core Breakpoints 80
Multi-Core Breakpoints and Stepping 80
Inspecting Multi-Channel-Sequencer (MCS) Channels 81

Using the MCDS On-Chip Trace with AURIX TC2xx 82
Preparations 82
Recording the first Samples 82
Hints for Multi-Core Trace 83

Using miniMCDS Trace for AURIX TC2xx/TC3xx 85
Preparations 85
Recording the first Samples 85

An Example with C166S V2 / XC2000 via JTAG/OCDS L1 87
Starting with UDE® Universal Debug Engine 87
Automatic Variables Refresh 87
Trigger Functions 87

An Example with MPC5567 via JTAG 89
Starting with UDE® Universal Debug Engine 89
Loading and Starting of an Executable 89

Introduction Overview 5 of 193

Automatic Variables Refresh 89
Trigger Functions 90
Hints for using the MPC55xx via JTAG 91

Creating hardware-specific Target Configurations 91
Creating a new workspace 91
Invoking the Wizard 91
Selecting the Controller Derivative 92
Selecting the Target Interface 92
Setting up the Target Interface 93
Configuring the FLASH memory 95
Finish the Wizard 96

Conclusion 96

User's Guide 97

Introduction 97
Architecture of UDE® Universal Debug Engine 98
Using On-line Help 99
Project Management 99

Working with Projects 99
Creating a New Project 100
Select Target Configuration 100
Loading a Project 100
Saving Project Settings 101
Closing a Project 101
Command line options of UDE® 101

Preparing a binary File 101
Compiler Support 102

Connecting the target system 104
Overview about Debug Communication Channels 104
Preparing the Communication 104
Connect the Target system 106
Multi-Target Debugging 106

Downloading a binary File 107
Download a multi-core and multi-program Application 107

Viewing Program Code 109
Workspace 109
Source Code Window 110

Running a program 112
Inline Assembler 112
Viewing and Modifying of Core Registers 112

Kinds of Core Register windows 112
Core Registers window 113
Peripheral Registers View 113
HTML View based on the UDE® Object Model 115

Watching Variables 115
Watches 116
Watch Expressions 116
Adding Variables and Expressions using Select Watches Dialog 118
Locals 119
Automatic variable content refresh 119

Stepping and Breakpoints 120
Overview 120
Following the program flow 120
Stop the program at a specified location 120
Breakpoints window 121
Breakpoint identifier 123

Viewing Memory Locations 123
Writing data to target 124
Updating data from target 124
Printing of memory locations 124

Using the Simulated I/O channel 125
Viewing Data as Scientific Charts 126

6 of 193 Overview Introduction

Array Chart 126
Time / Value Chart 127

Viewing Call Stack 130
Call Graph Analysis 130

Enabling the Call Graph Analysis 130
Configuring of Trace Configuration 130
Using the Call Graph Analysis 131

Program Execution Time Measuring 134
Trace, Visualization and Analyzing 134

Trace Analyzing Features and Windows 136
Trace Views 137
Profiling (stats) 142
Profiling (trace) 143
Code Coverage 147
Execution Sequence Chart 150
Data Trace Chart 151
Find All in Trace 154

Triggered Transfer Recorder 155
FLASH / OTP Programming 156

Supported Functions 156
Basic Concept 156
Definition of external FLASH Memories 159
Definition of on-chip FLASH Memories 159
Definition of Memory Access Filters 160
Enabling the FLASH Programming 160
FLASH Programming 161
Setup FLASH Programming options 162

CAN Recorder 163
Enabling the UDE® CAN Recorder 163
Send and Record CAN Messages 163

RTX Awareness 164
Enabling the RTX Awareness 164
Using the RTX Awareness 164

rcX Awareness 165
Enabling the rcX Awareness 165
Using the rcX Awareness 165

FreeRTOS Awareness 166
Enabling the FreeRTOS Awareness. 166
FreeRTOS Task Trace 166
Using the FreeRTOS Awareness 167

SAFERTOS Awareness 167
Enabling the SAFERTOS Awareness 167
SAFERTOS Task Trace 167
Using the SAFERTOS Awareness 168

PXROS-HR Awareness 168
Enabling the PXROS-HR Awareness 168
PXROS-HR Task Trace 169
Using the PXROS-HR Awareness 169

µC/OS-II Awareness 170
Enabling the µC/OS-II Awareness 170
µC/OS-II Trace 170
Using the µC/OS-II Awareness 171

A2L File Support 171
Using the A2L File Support 171

Protection Settings 172
Using Protection Settings 172

Activating and Using Add-Ins 173
Activating an Add-In 173
Removing an Add-In 173

Eclipse IDE for UDE® 174
Supported Eclipse IDE Versions 174
Prepare Eclipse IDE for UDE® Integration Package 174
Launching UDE® Debug Session in Eclipse IDE 175

Introduction Overview 7 of 193

Add UDE® Sample Project to Eclipse C/C++ IDE 177
UDE® Object Model 179

Overview 179
Automation Guide and Object Model Reference 179
An external Script-Example for TriCore in Python 180

Python Script Console 181
Supported Functions 181
Enabling the Python Script Console 181
Accessing the UDE® object model 181

User Definable Enhancements 182

Reference 183

Copyrights 185

List of Open Source Software Components 185
MCD Software License: ARM Ltd, Infineon Technologies, NXP, Lauterbach,
STMicroelectronics, TIMA Laboratory 185
Demangle Software License: Free Software Foundation 185
JPEG Software License: Thomas G. Lane - JPEG Group 186
Resizable Elements Software License: Paolo Messina 187
VB2PY Software License: Paul Paterson 187
CSPGen Software License: Sun Microsystems, Inc. 187
TreePropSheet Software License: Yves Tkaczyk 188
Avalon Dock Software License: Dirkster99/AvalonDock 188
Python Software License: Python Software Foundation 188
SQLite Consortium: SQLite Is Public Domain 189
MDFLib Software License: Michael Bührer & Bernd Sparrer 189
GreenWaves GAP8 IoT Register Definition License: GreenWaves
Technologies SAS 189
Kinetis FLASH Driver License: Freescale Semiconductor, Inc. 189

Index 190

Introduction Overview 9 of 193

Introduction

Overview
Thank you for choosing UDE® Universal Debug Engine 2025, one of the most powerful
development workbenches available for the 64-bit architectures S32V234, the 32-bit
architectures AURIX™, TriCore™, S32G, S32S, Power Architecture™, Cortex™-M/R/A,
ARM™-7/9/11, RH850, R-Car, SuperH™ SH-2A, RISC-V, ARC and for the 16-bit
architectures C166*, ST10*, XC166, XC2000, XE166, C166CBC, C166S V2 derivatives.

The software which you are about to install is the UDE® Standard License software.
Included with the full licensed version comes a high-speed communication hardware
which speeds up downloading your application into the target system. It offers a flexible
way of communication via various communication channels to the supported
microcontroller.

Special versions of UDE® like the UDE® Memtool Flash/OTP Memory Programming
Tool are available on your request.

This UDE Manual.pdf describes the UDE® Universal Debug Engine based on the
selective Evaluation Boards. However, the UDE® is also working with other AURIX,
TriCore, Power Architecture, Cortex-M/R/A, ARM-7/9/11, RH850, R-Car, SH-2A, RISC-V,
ARC, C166, ST10, XC166, XC2000, XE166, and XScale based hardware and simulators.
Please see the compatibility list in appendix of this manual or the up-to-date list on our
Web site for supported MCUs.

The UDE Manual Appendix.pdf, an appendix of this manual, supplements this manual.
Please see this manual for detailed description of the hardware interfaces.

You are invited to browse to our Web site at https://www.pls-mc.com to get the newest
information or to download the latest version of UDE® Universal Debug Engine. Please
check your registration for the PLS Newsletter, which informs you about latest UDE®
news and updated software version of the UDE® . The PLS Newsletter is provided via e-
mail and you can register it via your profile at https://www.pls-
mc.com/accounts/profile/. In addition, the latest update information is available via the
About Box of UDE®.

* C16x/ST10-related products and services are provided only to existing customers with existing projects.
C16x/ST10 support is not available for new projects.

Feedback

PLS welcomes feedback on our products and documentations. If you have any
comments, suggestions or improvements about the products you are using, please use
the Feedback Form from our Web Site https://www.pls-mc.com, send an e-mail to
support@pls-mc.com or call our Support Line.

?

https://www.pls-mc.com/
https://www.pls-mc.com/accounts/profile/
https://www.pls-mc.com/accounts/profile/
https://www.pls-mc.com/
mailto:support@pls-mc.com

10 of 193 Safety Instructions for Products and Equipment Introduction

Safety Instructions for Products and Equipment

Warning! It is critical that you read and follow this safety advice, the product description
including technical data and the associated technical documentation. Do not use the
product if you cannot read and/or understand the Information for safe operation. If you do
have questions for safe operation, please contact the PLS support at support@pls-
mc.com.

This PLS product enables users to control systems which accomplish safety functions
(e.g., in electronic control systems), to change safety relevant data, or to allocate those
for further processing. Hence, the application of this product can be hazardous. Improper
use and unskilled application without adequate instruction and experience in handling of
such products may cause threats to life and physical conditions as well as damages to
property.

Our products have been developed and released exclusively for use in applications
defined in the product description.

Fitness and suitability of the products for any intended use beyond the utilization for
which the products have been released (e. g. other stresses/strains or technical
conditions) need to be verified by the user on his own authority by taking appropriate
actions and measures (e. g. by means of tests).

➢ PLS products made available as beta versions of firmware, hardware and
software are to be used exclusively in testing and evaluation. These products
may have not sufficient technical documentation and may not fulfill all
requirements for quality and accuracy for market released series products.
Therefore, product performance may differ from the product description and your
expectations. The product should be used only in controlled test environments.
Do not use data and results from beta versions without prior and separate
verification and validation and do not pass them to third parties without prior
examination.

➢ Do not use this product if you do not have proper experience and training in using
the product.

➢ Data of any kind, which have been identified or collected by using PLS products,
have to be verified with respect to reliability, quality and suitability prior to any use
or dissemination.

➢ When using this product with systems which accomplish safety functions (e.g., in
electronic control systems) that influence system behavior and can affect the safe
operation of the system, you must ensure that the system can be transitioned to a
safe condition (e.g. emergency shutdown or emergency operation mode) if a
malfunction or hazardous incident should occur.

➢ All applicable regulations and statutes regarding operation must be strictly
followed when using this product

➢ It is recommended to use the products only in closed and designated test
environment.

Warning! If you fail to follow this safety advice, there might be a risk of death, serious
injury or property damage. PLS and their representatives shall not be liable for any
damage or injury caused by improper use of the product. PLS provides trainings
regarding the proper and intended use of this product.

Regulatory Compliance and Compliance Statements

The UADx hardware is in conformity with the protection requirements of the EU Council
Directive EMC 89/336/EWG, EMC 2004/108/EC, EMC 2014/30/EC. The UADx hardware
has been tested and found to comply with the limits for Class B Information Technology
Equipment according to the European Standard EN 55022, EN 55024.

The UADx hardware complies with the relevant provisions of the RoHS Directive for the
European Union.

!

!

mailto:support@pls-mc.com
mailto:support@pls-mc.com

Introduction Safety Instructions for Products and Equipment 11 of 193

Software

➢ Install the software only on systems which fulfill the minimum requirements both
in hard- and software.

➢ For installation of the software administrator rights are required to copy files in
directories which are protected by the Windows OS, to install device drivers and
modify the registry.

➢ The software enables the in-depth control of embedded systems. It should only
be operated by persons who have the necessary expertise in the systems.

➢ Incorrect usage of the software can lead to irreparable destruction of components
in the connected systems. This concerns in particular components whose
integrated permanent memory (e.g. FLASH, PCM) is protected by special
mechanisms.

➢ There is a particular danger if mechanical devices such as motors or actuators
are controlled by the embedded systems. In this case, all necessary precautions
must be taken to avoid accidents, e.g., emergency shutdown.

➢ There is also a particular danger if the embedded systems switch voltages that
exceed the permissible contact voltages. In this case, all precautions must be
taken to avoid accidents, e.g. insulation.

Electrical Safety Instructions

The UDE® Universal Debug Engine shall only be used according to the installing
instructions of the UDE Manual.pdf and UDE Manual Appendix.pdf. Any external power
supply used with the Universal Access Device (UAD2pro, UAD2+, UAD2next, UAD3+ ...) and
its components shall comply with the relevant regulations and standards applicable in the
country of intended use.

Please observe the following safety instructions when using the power supply:

➢ Always use the supplied power adapter, and connect it to an AC outlet of the
rated voltage and frequency. If an AC adapter other than those specified by PLS
is used, it may result in damage to the UADx and its accessories or AC adapter,
fire or electric shock.

➢ Do not insert or disconnect the AC plug with wet hands. Doing so may cause
electric shock.

➢ Insert the power plug fully and securely. Incomplete insertion may cause fire or
electric shock.

➢ The power supply unit should be connected to an easily accessible socket outlet
in the immediate vicinity of the unit.

➢ Always disconnect the power cord by holding the power plug. Pulling the power
cord itself may damage it and cause fire or electric shock.

➢ Ensure that the device connections do not come into contact with liquids and do
not touch them with wet or greasy hands or metal objects. If liquid gets into the
device, stop using the device immediately and contact support@pls-mc.com.

➢ Do not store the devices in environments with high humidity or where the
temperature may change suddenly. If condensation has formed, switch the
devices off immediately and wait until all water drops have evaporated.

➢ Do not pour liquid substances over the UADx and its accessories or drop other
objects on it, this could cause serious damage to the UADx and its components.
If this should happen please stop all work with the UADx and its accessories
immediately and contact support@pls-mc.com.

➢ Do not disassemble or attempt to repair the equipment. If a device is damaged,
stop using the device immediately and contact support@pls-mc.com. Do not
touch damaged areas. Avoid contact with eventually spilled liquids.

!

mailto:support@pls-mc.com
mailto:support@pls-mc.com
mailto:support@pls-mc.com

12 of 193 Safety Instructions for Products and Equipment Introduction

➢ If the UADx and its accessories is visibly damaged or its functionality is limited, it
must not be used without prior instruction from support staff (support@pls-
mc.com). Especially if components are damaged where voltage is flowing
through them. These must be replaced by the manufacturer in order to avoid
hazards.

➢ Unplug the power cord from the wall outlet during a thunderstorm or prolonged
absence! Otherwise, damage to the unit could be caused by overvoltage.

Mechanical Safety Instructions

➢ Hold the head of the USB cable with your index finger and thumb on both sides
and insert the cable straight into the USB port as shown in the illustration below.
Make sure that you insert it straight and not at an angle.

➢ Hold both sides of the USB cable with your index finger and thumb at the point
where it is connected to the computer and carefully pull it out horizontally to
remove the cable from the USB port.

➢ Do not insert or remove a USB plug with excessive force.

➢ Do not plug in or pull out the USB plug upwards, downwards, left, right or
forwards.

➢ Do not pull or tug on the USB cable when plugged into the port.

mailto:support@pls-mc.com
mailto:support@pls-mc.com

Introduction Safety Instructions for Products and Equipment 13 of 193

Safety Instructions

➢ Do not use the Universal Access Device (UAD2pro, UAD2+, UAD2next, UAD3+ ...)
and its accessories in places where flammable or combustible gases (gasoline
etc.) are present. Doing so may cause a fire.

➢ The UADx and its components should be operated in a well-ventilated
environment and should not be covered. The UADx and its accessories are only
intended for use inside buildings.

➢ The UADx and its components should be placed on a stable, flat surface in use.

➢ Do not use excessive force when using the equipment. Do not pull on cables or
bend them too much.

➢ Do not expose the devices to fire, microwaves or high temperatures.

➢ The UADx and its accessories must not be operated if it is damaged, or if smoke
or odd smells occur. Doing so may result in a fire. In such situations, disconnect
the power adapter from the AC outlet, and contact support@pls-mc.com.

➢ Make sure that the UADx and its accessories is stored at ground level and in a
position that does not endanger persons and surrounding equipment.

➢ Do not place the UADx and its accessories on an unstable or sloping surface.
Doing so may result in its dropping or overturning, causing injury. Be careful not
to drop the UADx and its accessories when carrying it.

➢ Before cleaning, remove all connected cables to avoid the risk of electric shock.
Clean the outside of the devices only, using a soft, damp cloth. Do not use
chemicals or abrasives. Avoid under all circumstances the penetration of
moisture into the device.

➢ The use of spare parts, accessories and special equipment which have not been
tested and approved by PLS can have a negative influence on the function and
properties of the UADx and its components. Therefore, PLS is not liable for any
resulting damage.

➢ Improper operation of the UADx and its accessories may cause damage to the
devices or other property. It may therefore only be used in technically perfect
condition and for its intended purpose in accordance with the operating
instructions given in the manual.

➢ Safe use of UADx and its accessories is only possible if the user manual is read
completely and the instructions are followed completely. Non-observance of the
instructions can lead to considerable damage or accidents.

➢ Anyone using UADx and its accessories must have access to the user manual.
The user manual can be found here: in the delivery content of the UDE® as
printed manual, UDE® Software installation as PDF.

➢ Keep these operating instructions in a safe place for later use.

➢ The product may only be used by persons instructed in the safe use of the
product and understand the resulting dangers.

➢ Children should be supervised to ensure that they do not play with the UADx and
its components.

➢ Keep the devices, all accessories and packaging materials out of reach of
children and pets. Small objects such as the packaging materials could be
accidentally swallowed. Cables could be tied around the neck.

!

mailto:support@pls-mc.com

14 of 193 Versions of UDE® Introduction

Versions of UDE®

The UDE® Universal Debug Engine for AURIX, TriCore, Power Architecture, Cortex,
ARM7, ARM9, ARM11, RH850, R-Car, SuperH SH-2A, RSIC-V, ARC, C166*, ST10*,
XC166, XC2000, XE166, XScale derivatives is available in several high-speed full-
featured versions with extra communication hardware. Versions with simulator support
are available too.

The following table describes the differences between these versions of UDE®.

The Standard versions are equipped with specialized communication hardware and
allow high transmission rates. Additional various communication channels are featured.

1. The Standard version UAD2pro allows a flexible way of communication and is
suitable for desktop and notebook users in the same way. The UAD2pro
communicates with the host PC via the USB2.0 bus. Target communication is
supported via ASC, SSC, CAN, JTAG, cJTAG, DAP, SWD.

2. The Standard version UAD2+ is the all-in-one solution for UDE®. It communicates
with the host PC via the USB2.0, IEEE1394 or Ethernet bus. Target communication is
supported via ASC, SSC, 3Pin, CAN, JTAG, DAP, SWD. Additionally, the UAD2+
supports the program instruction trace with the Trace Board add-in feature.

Please note the UAD2next supersedes the UAD2+. For new projects, the UAD2+ is no
longer available. Of course, all existing UDE®/UAD2+ licenses will be maintained
continuously for the next years without limitations.

3. The Standard version UAD2next is the next generation of the all-in-one solution for
UDE®. It communicates with the host PC via the USB3.0 or Gigabit Ethernet bus.
Target communication is supported via ASC, CAN, JTAG, DAP, SWD. Additionally,
the UAD2next supports parallel and serial trace with the Trace Board add-in feature.

4. The Standard version UAD3+ is the high-end-solution for UDE®. It communicates
with the host PC via the USB2.0, IEEE1394b or Gigabit Ethernet bus. Target
communication is supported via JTAG, cJTAG, DAP, SWD. Additionally, the UAD2+
supports the high-speed parallel and serial trace with the Trace Board add-in feature.

The Simulator version features a debugging environment via various simulators. The
simulator can be used effectively in the early stages of software development, reducing
the length of time spent later on system integration. The UDE® debugger uses the
simulator interface like a real hardware platform. All advantages of HLL-Debugging are
offered with the combination of UDE® and the simulator environment.

* C16x/ST10-related products and services are provided only to existing customers with existing projects.
C16x/ST10 support is not available for new projects.

Demo versions of UDE® are also available. These versions have restrictions in
visualization functions at runtime, PCP assembler support, MCDS and trace capabilities
(if available), and Script support. All other functions are available for testing. Such Demo
versions are not described in this manual!
Please see the separate manual for more information or contact the PLS Support Team.

!

!

Introduction Delivery Contents 15 of 193

Delivery Contents

Depending on your UDE® version, please check the delivery contents from the following
table and make sure that the package contains all of the required parts.

S
ta

n
d
a
rd

 v
e
rs

io
n

U
A

D
2

p
ro

S
ta

n
d
a
rd

 v
e
rs

io
n

U
A

D
2

n
e
x
t

S
ta

n
d
a
rd

 v
e
rs

io
n

U
A

D
2

n
e
x
t
w

it
h

T
ra

c
e
 O

p
ti

o
n

S
ta

n
d
a
rd

 v
e
rs

io
n

U
A

D
3
+

S
ta

n
d
a
rd

 v
e
rs

io
n

U
A

D
3
+

 w
it
h
 T

ra
c
e

B
o

a
rd

S
im

u
la

to
r

v
e
rs

io
n

Software and Manuals

UDE Quick Reference Guide      

CD-ROM      

Access Devices

UAD2pro 

UAD2next  

UAD2next Trace Module 

UAD3+  

UAD3+ Debug Pod  

UAD3+ Trace Board 2
(built-in) 4

UAD3+ Parallel Trace Pod 3

UAD3+ Aurora Trace Pod 3

USB-Key 

Interface Devices

UAD2 Debug Adapter (ARM, DAP,
SWD, OnCE, COP, ..)

UAD2pro/UAD2next/UAD3+ Debug
Adapter (ARM, DAP, SWD, OnCE,
COP, ..)

3 3 3 3 3

UAD2next /UAD3+ Trace Adapter
(ETM, NEXUS, Aurora, ..) 4 4

16 of 193 Delivery Contents Introduction

S
ta

n
d
a
rd

 v
e
rs

io
n

U
A

D
2

p
ro

S
ta

n
d
a
rd

 v
e
rs

io
n

U
A

D
2

n
e
x
t

S
ta

n
d
a
rd

 v
e
rs

io
n

U
A

D
2

n
e
x
t
w

it
h

T
ra

c
e
 O

p
ti

o
n

S
ta

n
d
a
rd

 v
e
rs

io
n

U
A

D
3
+

S
ta

n
d
a
rd

 v
e
rs

io
n

U
A

D
3
+

 w
it
h
 T

ra
c
e

B
o

a
rd

S
im

u
la

to
r

v
e
rs

io
n

Pod Interface Cables

UAD3+ Debug Pod Cable (26-
wire HD Cable)  

UAD3+ Trace Pod Cable (68-wire
HD Cable) 

Target Interface Cables

UAD2pro/UAD2next/UAD3+ Debug
Adapter Cable (40-wire HD Flat
Ribbon Cable)

    

UAD2next/UAD3+ Parallel Trace
Adapter Cable (38-wire HD Flat
Ribbon Cable)

 3 3

UAD3+ HSS22 MCDS Trace
Adapter + Cable (24cm flex
cable)

 3 3

UAD3+ HSS34 NEXUS Trace
Adapter + Cable (24cm flex
cable)

 3 3

Host PC Adapters and
Cables

Host USB Cable     

Power Supply

Wall Transformer 220 VAC
50~ / 12V DC (6W) 5

Wall Transformer 110-220VAC
50-60~ / 12V DC or 18V DC
(24W)

5  

Wall Transformer 110-220VAC
50-60~ / 12V DC or 18V DC
(100W)

  

 3 optional shipped, corresponding your order 4 with Trace Board option only 5 depending on your country location

Introduction System Requirements 17 of 193

System Requirements

To run UDE® Universal Debug Engine at least the following minimum system
configuration is required:

 Minimum Recommended

CPU
Intel or AMD x86_64
(64-bit) processor

Intel Core i7™ or AMD R7
processor

RAM 4 GByte 8 GByte

Free disk space 2 GByte HDD 8 GByte SSD

Display SXGA WUXGA

Operating System
Windows10 64-bit or

Windows11 64-bit

Windows10 64-bit or

Windows11 64-bit

Dependencies

➢ Microsoft Visual C++ 2015-2022 Redistributable (x64)

Note: Installations packages of these components are include with and installed by UDE®
setup package. However to avoid side effects on other applications these components
are not uninstalled when UDE® is uninstalled.

Additional requirements

➢ Optional: CD-, DVD- or BD-drive for installation from CD-ROM

➢ Microsoft .NET™ Framework 4.8.x

➢ Administrator permissions for the current login during installation

➢ Up to 200 GByte disk space (SSD recommended) may be required by features based
on Aurora Trace.

Depending on the type of target access, you will additionally need one of the following
interface ports:

➢ an USB port interface for the Standard version with UAD2pro or UAD2+ or UAD2next or
UAD3+ or for the Demo version for Easy Kits XC166, XC2000, XE166 or for the
Simulator version with USB-Key or the Standard version with USB-JTAG-Port

➢ or an Ethernet interface for the Standard version UAD2+ or UAD2next or UAD3+

➢ or an IEEE1394-OHCI interface for the Standard version with UAD2+ or UAD3+ via
IEEE1394 or an IEEE1394b-OHCI interface for the Standard version with UAD3+ via
IEEE1394b.

The UDE® Eclipse Integration Package Eclipse 4.x UDEEclipse4Integration requires
following further environment:

➢ 64-bit version of Java JRE 8, JRE 11 or higher

➢ 64-bit version of Eclipse 4.8 - 4.35 or newer and the appropriate CDT package.

!

18 of 193 Installation Notes - Before you install UDE® Installing of UDE® Universal Debug Engine

Installing of UDE® Universal
Debug Engine

Before you start the installation process, please ensure which version of UDE® Universal
Debug Engine you intend to use. Check that your package contains the required
hardware parts and install the hardware and software according to the following
description.

Depending on your UDE® version, please follow the corresponding instructions.

Please note that you must have administrator rights for successful execution of the
installation process.

Installation Notes - Before you install UDE®

Proper functioning of the UDE® Universal Debug Engine and its hardware devices is only
guaranteed for working with the original components tested and delivered by PLS. All
delivered components have been verified based on the recommendations and standards
of the chip manufacturers.

Please note the hints of Safety Precautions in the UDE Manual Appendix.pdf first.

When starting a newly installed version of UDE® for the first time, a firmware update
may be executed for the access device (UAD2pro, UAD2+, UAD2next, and UAD3+). This
may take some more time than usual for the “target connect” operation. Please DO NOT
power OFF or unplug the access device during this period!

!

!

!

Installing of UDE® Universal Debug Engine Installing UDE® Software 19 of 193

Installing UDE® Software

Working with the CD browser

The CD browser from the UDE® CD-ROM helps you to install the UDE® software.

Please insert the UDE® Universal Debug Engine CD-ROM. Please start the Setup.exe
from the CD-ROM root directory manually.

The UDE® CD-ROM contains following chapters:

➢ Readme UDE 2025 – Contains important information about the current UDE®
installation and requirements. Please read it first.

➢ Release Notes UDE 2025 – Contains important information about the current
specific UDE® installation and their requirements. Please read it carefully.

➢ Install UDE 2025 – Start the installation process of the full UDE® Universal Debug
Engine version. Valid license keys are required.

➢ Company and Product Information – Find out more about all of the UDE® products.

Download the latest UDE® Release from Website

Alternatively check the PLS' website for the latest UDE® version. If you are here for the
first time, create a new registration by opening the link https://www.pls-
mc.com/accounts/signup/ before and filling out the form. Do not forget to enter your
company e-mail address and the serial number of your UAD device!

Full access to the UDE® and UDE® Memtool download area is only granted if a serial
number exists. Otherwise access is limited to general information.

Your registration request will be processed directly by our Support Team and you will be
informed by e-mail about the progress of the registration process. In the meantime,
please log out until you receive the welcome e-mail notification. If you recently
confirmed your registration via the e-mail link and have not yet received the Welcome to
our Community e-mail, please wait for this information. Your login will not work until then.

!

https://www.pls-mc.com/accounts/signup/
https://www.pls-mc.com/accounts/signup/

20 of 193 Installing UDE® Software Installing of UDE® Universal Debug Engine

Login at https://www.pls-mc.com/accounts/login/ and open

➢ Download Latest UDE version at https://www.pls-mc.com/download.htm (single
file download) or

➢ Service – Downloads and Updates at https://www.pls-
mc.com/service/downloads/ (download all).

As a customer with a valid maintenance contract, you have access to

UDE Software

➢ Safety Instructions for Products and Equipment

➢ Current UDE Memtool version (and Legacy UDE Memtool versions)

➢ Current UDE version (and Legacy UDE versions)

➢ UDE Samples

UDE Device Driver Software

➢ Drivers for legacy UDE® versions, not required for current UDE versions!

Product Information and Manuals

➢ Product Information

➢ UDE Manual.pdf, UDE Manual Appendixpdf, UDE Memtool Manual.pdf

➢ Application Notes.

Please note that only either UDE® or UDE® Memtool of a major version can be installed
and used at the same time. UDE® contains the full functionality of UDE® Memtool.

In the case of questions contact the PLS support at support@pls-mc.com.

!

https://www.pls-mc.com/accounts/login/
https://www.pls-mc.com/download.htm
https://www.pls-mc.com/service/downloads/
https://www.pls-mc.com/service/downloads/
mailto:support@pls-mc.com

Installing of UDE® Universal Debug Engine Installing UDE® Software 21 of 193

Start the UDE® Installation

When a newly installed version of UDE® is started for the first time, a firmware update
may be executed for the access device (UAD2pro, UAD2+, UAD2next, and UAD3+). This
may take cause the “target connect” operation to take longer than usual. Please DO NOT
power off or unplug the access device during this time!

Please note that you must have administrator rights in order to successfully complete
the installation process.

The UAD driver software is also installed as part of the installation process. The drivers
are signed by PLS, and it is necessary to trust this signature. During the driver
installation, the message box “Windows Security: Would you like to install this
device software? Name: pls Development Tools. Publisher: pls Programmierbare
Logik & Systeme GmbH” will appear. To trust and install the PLS driver software, click
the Install button.

Before you can use the UDE® Universal Debug Engine, you must install the software
components.

➢ Using the UDE CD-ROM start Setup.exe from the UDE® CD-ROM

➢ Using the UDE Download start the downloaded file, e.g. ude-2025-01.exe.

3. Click Next to continue the installing process or click Cancel for aborting.

4. Check the license terms and your customer information and click Next to continue.

5. Optionally, use the Browse button to select a different installation location. Please
specify an empty or new directory for the UDE® software. Click Next.

6. Select the Program Folder and click Next to continue.

7. Click Next to continue the installation process.

!

!

!

22 of 193 Installing Hardware Installing of UDE® Universal Debug Engine

Installing Hardware

Static Electricity Precautions

Electrostatic Discharge (ESD) can damage a sensitive electronic
component! Under several conditions static electricity and ground
potential differences between the Access Device and the user's
target hardware can build up high voltages - over 10000 Volts (
10 kV) in some cases. The electrostatic discharge of this build-up
voltage results in fast high current waveforms and fast magnetic
(H-field) or electrostatic (E-field) disturbances. The discharge into
the electronic components and circuitry can damage or destroy
hardware components, resulting in failures and reduced reliability.

Because of the non-hot-pluggable 1.65 Volts / 5.0 Volts properties of the
JTAG/DAP/SWD connectors, these ports are endangered especially by electrostatic
discharging. The maximum voltage on these pins must not exceeded 5.5 Volts against
the UAD’s ground, especially in the case that the ground planes are not connected first.

To protect your hardware against damage from static electricity and ground potential
discharge, you have to follow some basic precautions:

1. Before you change any cable connections from the Access Device, please remove
the power from the Access Device and your target system.

2. Please ensure that the static electricity and ground potentials between the Access
Device, the host PC and the target hardware are balanced. If there is a danger of
high potential differences, you must connect the Access Device, the host PC and the
target hardware to the same ground potential by a low resistance connection.

3. Establish the target connection and power ON the systems.

Universal Access Device 2
next

Host Ground

potential

UAD2
next

 Ground

potential

Target Ground

potential

First: Connect an additional

common ground line in case

of potential differences !

Second: Connect Target,

Host and Power interface !

Hint: All Universal Access Devices are equipped with a ground socket on the front side.
Please use this ground socket for discharging the static electricity and balancing ground
potentials between the Universal Access Device, the host PC and the target hardware
BEFORE you connect the target hardware to the Access Device.

!

Installing of UDE® Universal Debug Engine Installing Hardware 23 of 193

Note: The next step depends on your selection of the target access and UDE® version
respectively. The following step describes what you have to do for each target
communication channel.

Standard Version UAD2pro (via JTAG/DAP/SWD)

Install the hardware of UAD2pro as follows:

1. Connect the UAD2pro (connector 'USB') with an USB connector of the installed USB
host adapter in your PC (USB 2.0 is recommended).

2. Connect the ground socket with the ground potential of your target hardware for
discharging the static electricity and balancing ground potentials.

3. Connect the UAD2pro with the JTAG connector by the 40-pin cable and delivered
adapter. Refer to the appendix Hardware Description of the user’s manual for more
information about the correct pin connections.

Universal Access Device 2pro

Trans

former

Trans

former

USB

Debug Adapter

Starterkit or custom

specific Target System

Host PC

4. Connect the wall plug transformer's cable with the 'Power' jack to the UAD2pro and
power on the system.

5. The driver software was installed during the previous software installation. After
initialization, the UAD2pro is connected to the host system and ready. A detailed
description of the driver installation can be found in chapter Driver Installation for
Universal Access Device.

The UDE® workbench is now installed and ready to use.

If you encounter difficulties installing the product, please contact the PLS Support Team
at support@pls-mc.com.

Please note the important information about required ESD protection of the access
devices in chapter Static Electricity Precautions!

?

!

mailto:support@pls-mc.com

24 of 193 Installing Hardware Installing of UDE® Universal Debug Engine

Standard Version UAD2pro (via ASC, CAN)

Install the hardware of UAD2pro as follows:

1. Connect the UAD2pro (connector 'USB') with an USB connector of the installed USB
host adapter in your PC (USB 2.0 is recommended, USB 1.1 is possible).

2. Connect the ground socket with the ground potential of your target hardware for
discharging the static electricity and balancing ground potentials.

3. Connect the 'ASC/CAN Target' connector of the UAD2pro with the ASC (RS232) or
CAN connector of the microcontroller board by a 9-pin 1:1 SUB-D9 (M) to SUB-D9 (F)
extension cable. Refer to the appendix Hardware Description of the user’s manual
for more information about the correct pin connections.

Universal Access Device 2
pro

Trans

former

Trans

former

USB

D-SUB ASC /

CAN Cable

Starterkit or custom

specific Target System

Host PC

4. Connect the wall plug transformer's cable with the 'Power' jack to the UAD2pro and
power on the system.

5. The driver software was installed during the previous software installation. After
initialization, the UAD2pro is connected to the host system and ready. A detailed
description of the driver installation can be found in chapter Driver Installation for
Universal Access Device.

The UDE® workbench is now installed and ready to use.

If you encounter difficulties installing the product, please contact the PLS Support Team
at support@pls-mc.com.

Please note the important information about required ESD protection of the access
devices in chapter Static Electricity Precautions!

?

mailto:support@pls-mc.com

Installing of UDE® Universal Debug Engine Installing Hardware 25 of 193

Standard Version UAD2+ (via JTAG/DAP/SWD)

Install the hardware of UAD2+ as follows:

1. Connect the UAD2+ (connector 'IEEE1394') with an IEEE1394 connector of the
installed IEEE1394 host adapter in your PC or connect the connector 'USB 2.0' with
an USB connector of the installed USB host adapter in your PC (USB 2.0 is
recommended) or the connector ETH with an Ethernet network.

2. Connect the ground socket with the ground potential of your target hardware for
discharging the static electricity and balancing ground potentials.

3. Connect the 'JTAG/OCDS Target' connector of the UAD2+ with the Debug Extender
via the 40-wire HD flat ribbon cable. Connect the Debug Extender with your target by
the 14-wire, 16-wire or 20-wire JTAG cable. Refer to the appendix Hardware
Description of the user’s manual for more information about the correct pin
connections.

Universal Access Device 2

+

Trans

former

Trans

former

USB, ETH,

IEEE1394

Debug Extender

Starterkit or custom

specific Target System
Host PC

4. Connect the wall plug transformer's cable with the 'Power' jack to the UAD2+ and
power on the system.

5. The driver software was installed during the previous software installation. After
initialization, the UAD2+ is connected to the host system and ready. A detailed
description of the driver installation can be found in chapter Driver Installation for
Universal Access Device.

The UDE® workbench is now installed and ready to use.

If you encounter difficulties installing the product, please contact the PLS Support Team
at support@pls-mc.com.

Please note the important information about required ESD protection of the access
devices in chapter Static Electricity Precautions!

?

mailto:support@pls-mc.com

26 of 193 Installing Hardware Installing of UDE® Universal Debug Engine

Standard Version UAD2+ (via ASC, SSC, CAN)

Install the hardware of UAD2+ as follows:

1. Connect the UAD2+ (connector 'IEEE1394') with an IEEE1394 connector of the
installed IEEE1394 host adapter in your PC or connector 'USB 2.0' with an USB
connector or the connector ETH with an Ethernet network.

2. Connect the ground socket with the ground potential of your target hardware for
discharging the static electricity and balancing ground potentials.

3. For Bootstrap loading via ASC (RS232), connect the ‘ASC/SSC/CAN0 Target’
connector with the target connector via a 9-pin D-SUB extension cable. In case of
ASC (TTL) or SSC (TTL), connect the 'ASC/SSC/3PIN Target' connector with the ASC
or SSC hardware pins of the microcontroller board by the 10-wire flat ribbon extension
cable. If CAN is used, additionally connect the 'CAN1 Target' connector with the target
via a 9-pin D-SUB extension cable. Refer to the appendix Hardware Description of
the user manual for more information about the correct pin connections of the ASC,
SSC and CAN interfaces.

Universal Access Device 2
+

Trans

former

Trans

former

USB, ETH

IEEE1394

D-SUB ASC / SSC /

CAN0 Cable

Starterkit or custom

specific Target System

Host PC

4. Connect the wall plug transformer's cable with the 'Power' jack to the UAD2+ and
power on the system.

5. The driver software was installed during the previous software installation. After
initialization, the UAD2+ is connected to the host system and ready. A detailed
description of the driver installation can be found in chapter Driver Installation for
Universal Access Device.

The UDE® workbench is now installed and ready to use.

If you encounter difficulties installing the product, please contact the PLS Support Team
at support@pls-mc.com.

Please note the important information about required ESD protection of the access
devices in chapter Static Electricity Precautions!

?

mailto:support@pls-mc.com

Installing of UDE® Universal Debug Engine Installing Hardware 27 of 193

Standard Version UAD2+ (via 3Pin)

Install the hardware of Universal Access Device2+ as follows:

1. Connect the UAD2+ (connector 'IEEE1394') with an IEEE1394 connector of the
installed IEEE1394 host adapter in your PC or connector 'USB 2.0' with an USB
connector or the connector ETH with an Ethernet network.

2. Connect the ground socket with the ground potential of your target hardware for
discharging the static electricity and balancing ground potentials.

3. Connect the 'ASC/SSC/3Pin Target' connector of the UAD2+ with the 3Pin connector
of the microcontroller board by the 10-wire 3Pin cable. Because the 3Pin connector is
not standardized, it must be installed on your target hardware subsequently. For
Bootstrap loading ASC (RS232)/3Pin solution, you must connect the ‘ASC Target’
connector with the ASC0 target connector. Refer to the appendix Hardware
Description of the user’s manual for more information about the correct pin
connections of the 3Pin interface.

Universal Access Device 2
+

Trans

former

Trans

former

USB, ETH

IEEE1394

D-SUB ASC

Cable

Starterkit or custom

specific Target System

Host PC

3Pin Cable

4. Connect the wall plug transformer's cable with the 'Power' jack to the UAD2+ and
power on the system.

5. The driver software was installed during the previous software installation. After
initialization, the UAD2+ is connected to the host system and ready. A detailed
description of the driver installation can be found in chapter Driver Installation for
Universal Access Device.

The UDE® workbench is now installed and ready to use.

If you encounter difficulties installing the product, please contact the PLS Support Team
at support@pls-mc.com.

Please note the important information about required ESD protection of the access
devices in chapter Static Electricity Precautions!

?

mailto:support@pls-mc.com

28 of 193 Installing Hardware Installing of UDE® Universal Debug Engine

Standard Version UAD2next (via JTAG/DAP/SWD)

Install the hardware of UAD2next as follows:

1. Connect the UAD2next (connector 'USB 3.0') with an USB connector of the installed
USB host adapter in your PC (USB 3.0 is recommended) or the connector ‘Ethernet’
with an Ethernet network.

2. Connect the ground socket with the ground potential of your target hardware for
discharging the static electricity and balancing ground potentials.

3. Connect the UAD2next with the JTAG connector by the 40-pin cable and delivered
Debug Adapter. Refer to the appendix Hardware Description of the user’s manual for
more information about the correct pin connections.

Universal Access Device 2
next

Trans

former

Trans

former

USB, ETH

Debug Adapter

Starterkit or custom

specific Target System

Host PC

4. Connect the wall plug transformer's cable with the 'Power' jack to the UAD2next and
power on the system.

5. The driver software was installed during the previous software installation. After
initialization, the UAD2next is connected to the host system and ready. A detailed
description of the driver installation can be found in chapter Driver Installation for
Universal Access Device.

The UDE® workbench is now installed and ready to use.

If you encounter difficulties installing the product, please contact the PLS Support Team
at support@pls-mc.com.

Please note the important information about required ESD protection of the access
devices in chapter Static Electricity Precautions!

?

mailto:support@pls-mc.com

Installing of UDE® Universal Debug Engine Installing Hardware 29 of 193

Standard Version UAD2next (with Trace support)

Install the hardware of UAD2next as follows:

1. Connect the UAD2next (connector 'USB 3.0') with an USB connector of the installed
USB host adapter in your PC (USB 3.0 is recommended) or the connector ‘Ethernet’
with an Ethernet network.

2. Connect the ground socket with the ground potential of your target hardware for
discharging the static electricity and balancing ground potentials.

3. Connect the Trace Module with the Trace Interface of UAD2next and the Trace
Adapter. Connect the Debug Adapter with the Trace Adapter. Connect the Trace
Adapter with the Trace connector of the target board. Refer to the appendix Hardware
Description of the user’s manual for more information about the correct pin
connections.

Universal Access Device 2
next

Trans

former

Trans

former

USB, ETH

Starterkit or custom

specific Target System

Host PC

Debug Adapter

Trace Module

Trace Adapter

4. Connect the wall plug transformer's cable with the 'Power' jack to the UAD2next and
power on the system.

5. The driver software was installed during the previous software installation. After
initialization, the UAD2next is connected to the host system and ready. A detailed
description of the driver installation can be found in chapter Driver Installation for
Universal Access Device.

The UDE® workbench is now installed and ready to use.

If you encounter difficulties installing the product, please contact the PLS Support Team
at support@pls-mc.com. For Trace installation, several Application Notes can be
provided on request.

Please note the important information about required ESD protection of the access
devices in chapter Static Electricity Precautions!

?

mailto:support@pls-mc.com

30 of 193 Installing Hardware Installing of UDE® Universal Debug Engine

Standard Version UAD3+ (via JTAG/DAP/SWD)

Install the hardware of UAD3+ as follows:

1. Connect the UAD3+ (connector 'IEEE1394b') with an IEEE1394b connector of the
installed IEEE1394b host adapter in your PC or connect the connector 'USB 2.0' with
an USB connector of the installed USB host adapter in your PC (USB 2.0 is
recommend) or the connector Ethernet with an Ethernet network.

2. Connect the ground socket with the ground potential of your target hardware for
discharging the static electricity and balancing ground potentials.

3. Connect one of the ‘Pod 1-4’ connectors with the Debug Pod via the Debug Pod
Cable. Connect the Debug Pod with the Debug Adapter via the Debug Adapter Cable.
Connect the Debug Adapter with the Debug connector of the target board. Refer to the
appendix Hardware Description of the user’s manual for more information about the
correct pin connections.

Universal Access Device 3
+

Trans

former

Trans

former

USB, ETH

IEEE1394b

Debug

Adapter

Starterkit or custom

specific Target System

Host PC

Debug Pod

4. Connect the wall plug transformer's cable with the 'Power' jack to the UAD3+ and
power on the system.

5. The driver software was installed during the previous software installation. After
initialization, the UAD3+ is connected to the host system and ready. A detailed
description of the driver installation can be found in chapter Driver Installation for
Universal Access Device.

The UDE® workbench is now installed and ready to use.

If you encounter difficulties installing the product, please contact the PLS Support Team
at support@pls-mc.com.
Please see chapter Debug/Trace Pod Configuration in the UDE Manual Appendix.pdf
for information about the firmware configuration of UAD3+ Debug/Trace Pods.
Please note the important information about required ESD protection of the access
devices in chapter Static Electricity Precautions!

?

mailto:support@pls-mc.com

Installing of UDE® Universal Debug Engine Installing Hardware 31 of 193

Standard Version UAD3+ (with Aurora Trace support)

Install the hardware of UAD3+ as follows:

1. Connect the UAD3+ (connector 'IEEE1394b') with an IEEE1394b connector of the
installed IEEE1394b host adapter in your PC or connect the connector 'USB 2.0' with
an USB connector of the installed USB host adapter in your PC (USB 2.0 is
recommend) or the connector ‘Ethernet’ with an Ethernet network.

2. Connect the ground socket with the ground potential of your target hardware for
discharging the static electricity and balancing ground potentials.

3. Connect one of the ‘Pod 1-4’ connectors with the Debug Pod via the Debug Pod
Cable. Connect the Debug Pod with the Trace Adapter via the Debug Adapter Cable.
Connect the Trace Adapter with the Trace connector of the target board. Do the same
with the Trace Pod interfaces. Refer to the appendix Hardware Description of the
user’s manual for more information about the correct pin connections.

Universal Access Device 3
+

Trans

former

Trans

former

USB, ETH

IEEE1394b

Starterkit or custom

specific Target System

Host PC

Debug Pod

 Trace Pod

Debug interface

connected to

Trace Pod

Trace Adapter

4. Connect the wall plug transformer's cable with the 'Power' jack to the UAD3+ and
power on the system.

5. The driver software was installed during the previous software installation. After
initialization, the UAD3+ is connected to the host system and ready. A detailed
description of the driver installation can be found in chapter Driver Installation for
Universal Access Device.

The UDE® workbench is now installed and ready to use.

If you encounter difficulties installing the product, please contact the PLS Support Team
at support@pls-mc.com. For Trace installation, several Application Notes can be
provided on request.
Please see chapter Debug/Trace Pod Configuration in the UDE Manual Appendix.pdf
for information about the firmware configuration of UAD3+ Debug/Trace Pods.
Please note the important information about required ESD protection of the access
devices in chapter Static Electricity Precautions!

?

mailto:support@pls-mc.com

32 of 193 Installing Hardware Installing of UDE® Universal Debug Engine

Simulator Version (TSim)

Install the hardware of UDE® Universal Debug Engine as follows:

1. Connect the USB-Key with an USB connector of your PC.

2. Follow the driver installation when the 'New hardware found' dialog appears.

3. The driver software was installed during the software installation. After initialization,
the USB-Key is connected to the host system and ready. A detailed description of the
driver installation can be found in chapter Driver Installation for Universal Access
Device.

The UDE® workbench is now installed and ready to use.

If you encounter difficulties installing the product, please contact the PLS Support Team
at support@pls-mc.com.

Standard Version XCP (via Ethernet))

Install the XCP device as follows:

1. Connect the XCP device to the host PC via Ethernet and to the target board.

2. If the UDE® license key depends on an UAD serial number, please also connect the
corresponding UAD to use that license key.

Supported XCP devices and microcontroller families for debugging and flashing via XCP:

Supported XCP devices Supported Microcontroller families

ETAS ETK-x Infineon AURIX TC2xx, TC3xx

ETAS FETK-x PowerPC STMicroelectronics SPC5xx, NXP
MPC5xx

ETAS XETK-x STMicroelectronics Stellar SR6xx

ETAS BR_XETK-x NXP S32Zxx

Vector VXx

Please note, that some special use cases (Built-in self-tests, debug protection, special
kinds of resets, special memory accesses, …) are only limited or not usable with XCP
Debugging. For these use cases, we recommend using an UAD.

If you encounter difficulties installing the product or do you have questions regarding
wiring or pinout please contact the support of your XCP device vendor.

Due to the amount of XCP devices and targets, not every combination XCP device /
target is supported with UDE®. We suggest, if you’re interested in XCP Debugging, to
contact the PLS Support Team at support@pls-mc.com to clarify the UDE® support.

If you have questions regarding the UDE® support of your XCP device / microcontroller or
if you encounter difficulties using UDE®, please contact the PLS Support Team at
support@pls-mc.com.

?

?

!

mailto:support@pls-mc.com
mailto:support@pls-mc.com
mailto:support@pls-mc.com

Installing of UDE® Universal Debug Engine Installing Hardware 33 of 193

UAD-JTAG Protector 2 for UAD2+

In hard process environments it is strongly recommended to use the JTAG-Protector
described below. This adapter allows an extended protection of the Universal Access
Devices and other JTAG based devices from the danger of over-voltage and ESD.

Install the hardware of UDE® Universal Debug Engine JTAG-Protector as follows:

1. Connect the UAD-JTAG Protector 2 connector 'UAD' (female connector) with the
JTAG connector of Debug Extender. If the Debug Extender is not equipped with a
male shrouded header, please contact the PLS Support.

2. Connect the UAD-JTAG Protector 2 connector 'Target' (male connector) with the
JTAG ribbon cable to your target.

Please note, that the function of the JTAG protections can be ensured only, when the
ground and target power connections (MCU I/O voltage) are established.

Universal Access Device 2
+

Host Ground

potential

UAD2
+
 Ground

potential

Target Ground

potential

Debug Extender +

JTAG Protector
USB, ETH

IEEE1394

If you encounter difficulties installing the product, please contact the PLS Support Team
at support@pls-mc.com.

Please note the important information about required ESD protection of the access
devices in chapter Static Electricity Precautions! Please note, that the JTAG Protector
DOES NOT suspend the precautions described in this chapter.

?

!

mailto:support@pls-mc.com

34 of 193 Driver Installation for Universal Access Device Installing of UDE® Universal Debug Engine

Driver Installation for Universal Access Device

If the previous steps succeeded, the software is installed with all components.

The installation process requires additional trusting and installing of the PLS signed
drivers. A message box “Windows Security: Would you like to install this device
software? Name: pls Development Tools. Publisher: pls Programmierbare Logik &
Systeme GmbH” occurred during the installation and must be trusted during installation
of the PLS device drivers.

When starting a newly installed version of UDE® for the first time, a firmware update
may be executed for the access device (UAD2pro, UAD2+, UAD2next, and UAD3+). This
may take some more time than usual for the “target connect” operation. Please DO NOT
power OFF or unplug the access device during this period!

UAD2+ via IEEE1394

Because of the Plug 'n Play-Capabilities of UAD and UAD2+ the IEEE1394 driver
instantiation is started automatically, when the Universal Access Device is connected to
the host PC the first time.

1. Power ON the Universal Access Device.

2. Connect the UAD or UAD2+ with the host
adapter of your PC using the 6-wire cable.
The Windows system will find a new
hardware device on your system called
Universal Access Device 2 in the pls
Debugging Devices group and will
instantiate a new device driver.

In the case of problems, please verify the
correct installation. Open the Device Manager,
the following entries are shown:

➢ IEEE 1394 Bus host controllers

➢ Your host bus controller

➢ pls Debugging Devices

➢ Universal Access Device 2

If one of the entries is marked with a question
mark, please unplug UAD2 und repair the
UDE® Driver installation by running the
program <UDE_DIRECTORY>\Driver\ude-
drivers.exe.

Please see the chapter Hardware Description of the user’s manual for additional
information.

?

!

!

Installing of UDE® Universal Debug Engine Driver Installation for Universal Access Device 35 of 193

UAD3+ via IEEE1394b

Because of the Plug 'n Play-Capabilities of UAD3+ the IEEE1394b driver instantiation is
started automatically, when the Universal Access Device is connected to the host PC the
first time.

1. Power ON the UAD3+.

2. Connect the UAD3+ with the host adapter of your PC using the 9-wire IEEE1394b
cable or a 6-9-wire IEEE1394 bilingual cable. The Windows system will find a new
hardware device on your system called Universal Access Device 3 in the pls
Debugging Devices group and will instantiate a new device driver.

In the case of problems, please verify the
correct installation. Open the Device Manager,
the following entries are shown:

➢ IEEE 1394b Bus host controllers

➢ Your host bus controller

➢ pls Debugging Devices

➢ Universal Access Device 3

If one of the entries is marked with a question
mark, please unplug UAD2 and repair the
UDE® Driver installation by running the
program <UDE_DIRECTORY>\Driver\ude-drivers.exe.

Please see the chapter Hardware Description of the user’s manual for additional
information.

?

36 of 193 Driver Installation for Universal Access Device Installing of UDE® Universal Debug Engine

UAD2pro, UAD2+, UAD2next, UAD3+ via USB port

Because of the Plug 'n Play-Capabilities of UAD2, UAD2+, UAD2next and UAD3+ the USB
driver instantiation is starting automatically, when the UAD2 or UAD3 is connecting to the
host PC the first time.

1. Connect the UAD2pro, UAD2+, UAD2next or UAD3+ to the PC host system using the
USB cable. The Windows system will find a new hardware device on your system
called Universal Access Device 2/3 in the pls Debugging Devices group and will
instantiate a new device driver.

In the case of problems, please verify the
correct installation. Open the Device Manager,
the following entries are shown:

➢ Universal Serial Bus controllers

➢ Your host bus controller

➢ pls Debugging Devices

➢ Universal Access Device 2/3

If one of the entries is marked with a question
mark, please unplug UAD2 and repair the
UDE® Driver installation by running the
program <UDE_DIRECTORY>\Driver\ude-
drivers.exe.

Please see the chapter Hardware Description of the user’s manual for additional
information.

?

Installing of UDE® Universal Debug Engine Driver Installation for Universal Access Device 37 of 193

UAD2+, UAD2next, UAD3+ via Ethernet TCP/IP

The UAD2+ and the UAD3+ are equipped with a 100 Mbit/s fast Ethernet interface. The
UAD2next are equipped with a 1000 Mbit/s (1 Gbit/s) Ethernet interface. It can be
connected to a local PC or to a local Network (LAN) via Hubs or Switches. The UAD2+,
UAD2next and UAD3+ support DHCP and static IP addressing.

Connection methods

Before using UAD2+, UAD2next or UAD3+ for debugging purposes, the devices needed to
be configured properly. The UAD2/3 can communicate to UDE® via the TCP/IP protocol,
if a valid IP (Internet Protocol) address is configured by:

1. Using DHCP, this requires a DHCP server on your network, or

2. Using a static IP address, this requires knowledge about the network structure, e.g.
knowledge of free IP addresses so that there is no IP used twice in the network.

At factory settings, the UAD2+, UAD2next or UAD3+ are configured with DHCP enabled.
After power ON the UAD tries to receive an IP address from a DHCP server. If it receives
no answer from a DHCP server, the UAD2+, UAD2next or UAD3+ will fall back to a static IP
address after 60 seconds.
The static fall back IP address is 192.168.1.100. The UAD2+, UAD2next, UAD3+ use the

following TCP ports for communication: 43690 (0xAAAA) and 43691 (0xAAAB).

Configuration of the IP address via Ethernet

The configuration of the UAD2+, UAD2next or UAD3+ can be changed, using a web
browser. After entering the current IP address, e.g.

http://192.168.1.248

the UAD2 Configuration Page or UAD3 Configuration Page appears as startup page.
The configuration page contains the serial number of the UAD2+, UAD2next or UAD3+ and
the current configuration at the left side of then page.

The example shows, that DHCP is enabled and the current IP address is 192.168.1.248.

38 of 193 Driver Installation for Universal Access Device Installing of UDE® Universal Debug Engine

On the right of the form, new settings can be entered. The configured IP address will also
be used as fallback, when DHCP is enabled but no DHCP answer is received. After
clicking Apply, the new settings are stored. To apply the new settings immediately, power
the UAD2+, UAD2next or UAD3+ OFF and ON again. Otherwise, they are applied after the
next power ON event.

Configuration of the IP address via USB/IEEE1394

If the IP address of the UAD2+, UAD2next or UAD3+ is unknown, it can be configured using
the USB or FireWire connection:

Connect the UAD2+, UAD2next or UAD3+ via USB or Firewire (when available) to a PC.
Open the device manager’s property page of the UAD2+, UAD2next or UAD3+ and select
Ethernet Config.

The Ethernet Configuration dialog appears where the same settings can be made.

Installing of UDE® Universal Debug Engine Driver Installation for Universal Access Device 39 of 193

Once the UAD2+, UAD2next or UAD3+ was configured, a connection via UAD2+, UAD2next
or UAD3+ can be established: Create a new workspace and select your target
configuration. If default is set as communication device and there is no other UAD2+ or
UAD3+ connected, the Ethernet device is found automatically.

If no UAD was found, open the menu entry Config – Target interface... in UDE® or menu
entry Target – Setup in UDE® Memtool. In the Target Interface Setup, dialog click on
the Setup button.

For using the TCP/IP communication, the Select Communication Device dialog is
opened. You can select the specific access device that you want to use. These settings
are stored in the target configuration *.cfg file format.

For Ethernet connections select UAD2 device, attached to Ethernet port. A specific IP
address to connect can be entered or an UAD2+, UAD2next or UAD3+ can be selected
from the list after retrieving available devices. Pressing OK applies the settings. A
connection is established now.

If multiple UAD2+, UAD2next or UAD3+ are used at the same time (e.g. for automated
FLASH programming), then every UAD2+, UAD2next or UAD3+ have its own target
configuration with either unique IP or unique serial number.

40 of 193 Driver Installation for USB-Key (Sentinel USB SuperPro) Installing of UDE® Universal Debug Engine

Driver Installation for USB-Key (Sentinel USB SuperPro)

Because of the Plug 'n Play-Capabilities of the USB-Key the USB driver installation is
started automatically, when the USB-Key is connected to the host PC the first time.

USB-Key via USB port

1. Connect the USB-Key to the PC host system using the USB port. The Windows
system will find a new hardware device on your system called USB SuperProNet or
USB SuperPro or USB UltraPro or SafeNet USB SuperPro/UltraPro in the
Universal Serial Bus controller or Other devices. By default, the driver is installed
during the UDE® installation process.

2. Click Next and Finish.

Installing of UDE® Universal Debug Engine License Manager 41 of 193

License Manager

During the installation process, you will be asked
for a license key.

1. You have got your personal license key as
License Certificate within the consignment of
UDE® Universal Debug Engine.

Please enter the key into the Input new License Key edit field and click Add UDE HW
Key. A new key entry will be added, if the license key is valid. Pushing the Button OK
applies the changes to the system.

2. Licenses from PLS are also distributed as key file with the extension *.ukf. Ask

support@pls-mc.com for the license key file with the serial number of the affected
UAD. Use the button Add UDE HW Key File to browse and select a new key file.

If you expand your feature list of UDE®, you will get further license keys. These keys will
either replace older keys or complement your key list. Please use the Help – License
Manager from the system menu of UDE® to open the License Manager.

If you do not have a valid license key for a used feature, a message box License check
failed will appear as soon as you request this feature. Please contact support@pls-
mc.com In this case.

Please note, that every license key applies to one Universal Access Device and one
supported architecture only! !

mailto:support@pls-mc.com
mailto:support@pls-mc.com
mailto:support@pls-mc.com

42 of 193 Node-locked licensing Installing of UDE® Universal Debug Engine

Node-locked licensing

UDE® Universal Debug Engine products can be licensed by node-locked licensing, if the
product package does not contain any additional access device, which will be used
normally for licensing of UDE®. For this license type, the customer receives an activation
key with his license documents. This activation key is the basic reference identifier
assigned to his UDE® license.

The activation process for a node-locked licensing based UDE® product will cover the
following steps:

1. The customer receives the activation key with his license documents and installs
UDE® on his Windows PC.

2. The customer determines the host identifier (host ID) of his PC. How to obtain a host
ID will be described in the following chapter.

3. The host ID must be transmitted to PLS’ support (e-mail to support@pls-mc.com)
with the corresponding activation key from the UDE® license documents.

4. The customer will receive the license file from PLS and install the license file using
UDE® license manager dialog.

How to get the Host ID of UDE® Installation

This chapter describes three methods to obtain the host ID, which are required for
generating a node-locked license file.

Obtain Host Identifier via UDE® License Manager

The following steps must be executed to obtain the host identifier by UDE® license
manager:

1. Start UDE.exe

2. Open UDE® main menu Help – License Manager to open UDE® license manager
dialog

The content of the dialog field Host Identifier can now be copied to Windows clipboard
and needs to be send to PLS’ Support Team support@pls-mc.com with the activation
key from license documents.

Obtain Host Identifier via UDE® License Key Request Form

All information required for license activation can also be provided by UDE License
Request Form. The usage of this service requires an active UDE® configuration and is
typically used for later requests for updated license keys.

mailto:support@pls-mc.com
mailto:support@pls-mc.com

Installing of UDE® Universal Debug Engine Node-locked licensing 43 of 193

The following step must be executed to create the appropriate information:

1. Start UDE.exe and connect to a target system.

2. Open UDE® main menu Help – UDE License Key Request Form to open the request
form.

3. Fill in all necessary fields of the License Key Request Form, such as User Name,
Company, Department, E-Mail Address and Activation Key for Node-locked
Licenses.

4. Fill the Save as ZIP file field by a local hard disk path and press the Save ZIP File
button.

5. Close this dialog

6. The created ZIP file contains all necessary information. Send it directly to the PLS
Support Team support@pls-mc.com without any further information.

mailto:support@pls-mc.com

44 of 193 Node-locked licensing Installing of UDE® Universal Debug Engine

Obtain Host Identifier via Script

The following three lines of script code must be saved to local disk as Visual Basic Script
file GetHostID.vbs:

set LicenseServer = CreateObject ("UDE.LicenseServer.2025")
RequString = LicenseServer.RLMHostID
WScript.Echo "PC Host ID:" & vbcrlf & RequString

This script must be executed on the Windows command line as follows:

CScript GetHostID.vbs > HostID.txt

The content of the file HostID.txt has to be send to PLS Support Team support@pls-
mc.com with the activation key from the license documents.

The script COM-object identifier of the UDE® license server is version depended. The
COM-object id listed in the script code above is the COM-object id of UDE® license server
of UDE® version 2025. If a different UDE® version is used, the first line of code must be
changed.

Using UDE® version 2025 this script code line must be changed to:

set LicenseServer = CreateObject ("UDE.LicenseServer.2025")

Setup of Node-Locked License File

After sending the host identifier of your Windows PC to PLS, you will get a license file,
which contains all licenses for all architectures, which are part of this license. The license
file has the extension *.lic and the license file contains several lines:

Usually the license is sent as attachment of an e-mail from PLS Support Team. Save this
attachment to a local hard disk path. Than execute the following steps to activate the
node-locked license by UDE® license manager dialog:

1. Start UDE.exe.

2. Open UDE® main menu Help – License Manager to open UDE® license manager
dialog.

3. Press Add NL License File and browse with the opened file input explorer to your
local copy of the license file.

4. After successful import, the license manger dialog will be updated and displays the
additional node-locked licenses.

!

mailto:support@pls-mc.com
mailto:support@pls-mc.com

Installing of UDE® Universal Debug Engine Uninstalling or Reinstalling UDE® 45 of 193

Uninstalling or Reinstalling UDE®

For uninstalling the UDE® Universal Debug Engine workbench, you may use the
Add/Remove Programs feature from the Control Panel or the Remove function of the
Setup program. The uninstall function will remove all UDE components, except user
changed files, like workspace or configuration files.

Note: If you made any modifications of the UDE® examples delivered with UDE® setup
and you want to keep these changes, copy or move the example source files to another
location before uninstalling or reinstalling of UDE®. However, the uninstall procedure will
not delete other projects and files.

For uninstalling of UDE®, execute the following three steps:

1. Click Start from system menu, choose Settings and open the Control Panel.

2. Choose the Add/Remove Programs Icon and open it.

3. Select 'Universal Debug Engine' and click Change/Remove ... Button.

For reinstalling the UDE® Universal Debug Engine start the Setup program Setup.exe

from the UDE® CD-ROM or from the file you downloaded from https://www.pls-
mc.com/download.htm. In the first step, click Repair and follow the instructions on the
screen.

Find out about the latest UDE® version
UDE® is constantly being developed and improved. Therefore, new UDE® major and
minor versions are released regularly. The information and executable files of the latest
UDE® version are provided in the following ways:

1. On the website at https://www.pls-mc.com/downloads.html the button
Download latest UDE version is linked with the latest UDE version for download
(see the picture below). The download of the latest major UDE® version will start
immediately.
If you’re not logged in, you will be asked to log in. Please register your account
once before. If the download is not available, please contact our Support Team
at support@pls-mc.com.

!

https://www.pls-mc.com/download.htm
https://www.pls-mc.com/download.htm
https://www.pls-mc.com/downloads.html
mailto:support@pls-mc.com

46 of 193 Find out about the latest UDE® version Installing of UDE® Universal Debug Engine

2. Log on the website at https://www.pls-mc.com/accounts/login/ and browse to
menu Service – Downloads and Updates. The dropdown box of the UDE
Download Area offers all available UDE® Version corresponding your
maintenance contract.

The UDE® about box can check, if a new UDE® version is available. Open the
About Box via UDE® menu, the UDE® Memtool menu or the UDEAdmin menu
Help – About UDE… and push the Check for update button. If an UDE® update
is available, a download link will be provided as described in the first way.

Open the link and log in if required. Afterwards the download of the latest UDE® version
will start immediately.

https://www.pls-mc.com/accounts/login/

Installing of UDE® Universal Debug Engine Trouble Shooting 47 of 193

Trouble Shooting

In case of trouble with UDE® please read the UDE Manual.pdf and the UDE Manual
Appendix.pdf very conscientiously. Make sure that you have connected all cables
properly and selected the correct target device.

Frequently Asked Questions (FAQ’s)

For technical questions, please consult the UDE® FAQ list on our website
https://www.pls-mc.com/faqs.html first.

Precautions when installing a new UDE® version

When starting a newly installed version of UDE® for the first time, a firmware update
may be executed for the access device (UAD2pro, UAD2+, UAD2next, and UAD3+). This
may take some more time than usual for the “target connect” operation. Please DO NOT
power OFF or unplug the access device during this period!

Downloading the latest UDE® Version

Our PLS Newsletter keeps you informed about latest news and software versions of the
UDE®. You can subscribe to the PLS Newsletter via your profile at https://www.pls-
mc.com/accounts/profile/.

You may find the latest version of UDE® Universal Debug Engine and other components
on our website https://www.pls-mc.com/download.htm for downloading. It is required
that you are registered and logged in before.

Reporting a Problem in UDE®

If a problem remains, after reading the hints of the UDE Manual.pdf of the latest UDE®
version and the FAQs, the fastest way is to download the UDE Support Checklist Form
from https://www.pls-mc.com/downloads/UDE_Support_Checklist_Form.pdf, fill out
and e-mail it to the PLS Support Line at support@pls-mc.com.

Run UDE®, open the affected workspace, set the Message View Log level to Maximum
and reproduce the problem. Open menu Help – UDE Support Request Form, fill out the
necessary fields and save it as a ZIP file. Now please send the ZIP file as attachment
including the used password to the PLS Support Line at support@pls-mc.com.

Our Support team will contact you as soon as possible.

Known Issues

Installation fails

Please make sure that you have full rights (administrator rights) for the installation
process of UDE®.

UAD2/ UAD2+ does not enumerate at USB-Bus

This happens, if an UAD2, UAD2+ is connected to a target without powering UAD2,
UAD2+. If the target system gets power before the UAD2, UAD2+, it is possible that it
does not connect correctly to USB. In this case, power OFF target, power OFF UAD2,
UAD2+, disconnect USB and disconnect the target from UAD2. Then power ON UAD2,
UAD2+, connect to USB, power ON target and connect both together.

If the problem persists, please do contact the PLS Support Team at support@pls-
mc.com.

!

https://www.pls-mc.com/faqs.html
https://www.pls-mc.com/accounts/profile/
https://www.pls-mc.com/accounts/profile/
https://www.pls-mc.com/download.htm
https://www.pls-mc.com/downloads/UDE_Support_Checklist_Form.pdf
mailto:support@pls-mc.com
mailto:support@pls-mc.com
mailto:support@pls-mc.com
mailto:support@pls-mc.com

48 of 193 Examples delivered with UDE® Getting Started

Getting Started

Examples delivered with UDE®
The UDE® Universal Debug Engine comes with a set of example programs that
demonstrates the features of UDE®. These examples are compiled with the available
compilers for known Starterkit and Evaluation boards and are installed in <PROGRAMDATA>,

which is located usually:

C:\Users\<USERNAME>\Documents\pls\UDE 2025\Samples

 Automation Example programs for UDE automation (Phyton, Perl, C#, C++)

 C16x Example programs for C167, ST10F167, ST10276 and other derivatives

 Cortex Example programs for Cortex-M4 S32V234 derivative

 Cortexv8 Example programs for Cortex-A53 S32V234 derivative

 PPC Example programs for PowerPC derivatives

 TriCore Example programs for TriCore derivatives

 TriCore2 Example programs for AURIX TC2xx derivatives

 TriBoard_TC23x Example programs for AURIX TC23x

 TriBoard_TC29x Example programs for AURIX TC29x

 MultiCoreDemo Example demonstration of multi-core features

 SimioDemo Example demonstration of the Simulated I/O capabilities, source code directory

 TimeDemo Example demonstration of the variables auto refresh mode and using interrupts

 IntRam Example located for using in internal RAM, contains binary and mapping file

 IntRom Example located for using in internal ROM, contains binary and mapping file

 Src Example source directory HighTec GNU compiler

 TriCore3 Example programs for AURIX TC3xx derivatives

 XC16x Example programs for XC161, XC167 and other derivatives

 XC2000 Example programs for XC2287, XC2267 and other derivatives

Getting Started An Example with AURIX TC3xx 49 of 193

An Example with AURIX TC3xx

We assume that you now have successfully installed the UDE® Universal Debug Engine
version. In this section, you will learn about how to ...

➢ start UDE®,

➢ use the windows in UDE® and

➢ load, start and debug existing applications.

We recommend you to go through this tutorial step-by-step. This example is using the
AURIX TC399 TriBoard Starterkit offered by Infineon Technologies with the
communication hardware add-on UAD2pro.

For further supported controllers, please have a look at the compatibility list below. For
the correct setup of the board look up the chapter Hardware Description Starterkit
boards in the UDE Manual Appendix.pdf.

Precautions

When starting a newly installed version of UDE® for the first time, a firmware update
may be executed for the access device (UAD2pro, UAD2+, UAD2next, and UAD3+). This
may take some more time than usual for the “target connect” operation. Please DO NOT
power OFF or unplug the access device during this period! For UAD3+ specifics, please
see the chapter Debug/Trace Pod Configuration from the UDE Manual Appendix.pdf.

Starting UDE® Universal Debug Engine

Once the operating system is up and running double-clicks on the icon UDE on the
desktop. Alternatively, UDE® may be launched also via Start – Programs – Universal
Debug Engine 2025 – UDE 2025. This will start the desktop of UDE® development
system.

The next step is to create a new workspace.
An UDE® workspace saves all configurations
and settings of UDE®, windows and their
content, path and name of loaded files. The
file extension is *.wsx.

Click New Workspace at the File menu and
create a new file, e.g. TC399_TriBoard.wsx.

After creating the new workspace, you will be
asked to select a target hardware
configuration. UDE® provides some default
target configurations of Starterkits. Click the
Default button and enable Use a default
target configuration to select a predefined
configuration.

In a later chapter, the creation of a new target
configuration will be described as well. In this
example, a communication hardware add-on, like the UAD2pro, is used.

!

50 of 193 An Example with AURIX TC3xx Getting Started

The TriBoard with TC399XE-BA configuration is available under the entry TriCore AURIX
TC3xx – Infineon – TC39xB Starterkit – TriBoard with TC39x B-Step (DAP). The
content of the parentheses describes the target communication channel.

Select this entry and click Finish. Set the name for the target configuration, e.g.
TriBoard_TC39xB_dap.cfg.In the Select target Configuration dialog, click OK and

select the cores for debugging.

If hardware initialization process is executed successfully, the UDE® connects to the
target hardware. For a first view the symbols and the target manager can be added via
menu Views – Symbols and Views – Target Manager.

Furthermore, UDE® generates a lot of hints and messages during its usage. It is helpful to
check this. For that, enable the message view via menu Views – Other windows –
Messages additionally.

If a valid license could not be found, a dialog License Check Summary appears. Please
check if the license key, you have got in the delivered UDE® package, was inserted in the
License Manager. Use the menu Help – License manager for verification and inserting
the key string. Alternatively, the hardware add-on is not connected or powered on. Please
use the Device Manager from the Control panel for validation.

For loading an existing workspace file, use either File – Open Workspace or File –
Recent Workspaces to select the workspace and start a new session with settings from
the saved workspace.

!

Getting Started An Example with AURIX TC3xx 51 of 193

If you got an error message, return to the section “Installing UDE® Software” and make
sure that all settings are correct. Please refer to section Trouble Shooting for further
information. If the problem persists, contact the PLS Support Team at support@pls-
mc.com for qualified help.

Loading a AURIX Executable

After having UDE® for TriCore started, we
want to load a program that can be executed
on the TriCore Starterkit board.

We will use the HighTec GNU compiler
variant of the TimeDemo. This example will

toggle the LED on the TriBoard only, for a
basic demonstration of the debugger
capabilities.

Select the menu entry Load Program in the
File menu, browse to folder
<UDE_SAMPLE_DIRECTORY>\TriCore3\TriBoa
rd_TC39x\TimeDemo\HighTec_IntRam\

and load the file TimeDemo.elf.

Binary and Symbols

Because of the multi-core nature of the AURIX architecture, the dialog offers the
capability to select binary and symbol information loading for each core separately.

Source File Management

If the debugger cannot find the source files specified in the symbol containing files, it can
request the location of the correct source path. This can happen, if the compiler’s-built
environment differs from the environment used by the debugging process.

mailto:support@pls-mc.com
mailto:support@pls-mc.com

52 of 193 An Example with AURIX TC3xx Getting Started

The examples source files are located in the \src and \board subfolders. You need to

provide the location on request. UDE® will remember your decision and will not ask again
for this source path.

Every entry of this relocated source is called Alias. The saved aliases of a workspace are
accessible via the menu Config – Debug Server Configuration – View Server –
Source Code – Aliases …

In some cases, the forced source alias may have changed. Use the dialog to delete the
affected entry. The next time the source file is used, UDE® will ask for the location again.

Source Path Replacement

The behavior described above is useful, if only few source file locations have changed. If
a complete source file tree is affected, you can give UDE® a replacement path, which will
be applied to all source file paths.

Use the menu Config – Debug Server Configuration – View Server – Source Code –
Path Management …

The dialog defines a
part for replacing and a
part for including the
new source location.
Via double-click you can
change the item.

You will see now the
source code of the main
function of the sample
application. After
clicking with the right-
hand mouse button into
the Program window, a
context menu appears
to switch the display
between Source code
only and Mixed
Source/Assembly code
via the Mixed Mode entry.

Getting Started An Example with AURIX TC3xx 53 of 193

Project management

A docked window at the left-hand side of UDE® houses the Core Symbols tab where the
application's source files and their inside procedures are shown after unfolding the
markers. If no symbols window is shown, you can make it visible via the menu Views –
Symbols. The UDE® project contains source files, C/C++ functions, address sections and
user-defined breakpoints.

By double-clicking on one of the source files in the Symbols window, the selected file will
be opened in the Program window; by double-clicking on one of the procedures, the
selected procedure is displayed. In the Program window, a yellow arrow indicates the
current IP position.

Please note: After downloading a program executable, the IP (Instruction Pointer) is set
to the entry point of the program. Usually the entry point is located at the start-up code.
To force the view of the current IP, use the context menu Show Next Statement or the
main menu Show – Show IP.

Running and Stepping through
the Application

After the application has been loaded, you may
open now the menu Debug to run or step
through the example procedures.

Click now on the Start Program Execution
entry or button and watch the LED on the
TriCore Starterkit board flashing. When clicking
on Break Program Execution, the application is
halted and the current IP position (code line) is
displayed. You may also step through the
application by using Step over Subroutine or
Step into Subroutine with following function
calls and executing subroutines instruction by
instruction.

!

54 of 193 An Example with AURIX TC3xx Getting Started

Note: For debugging the C/C++ parts of the example program only, the start-up code
must be executed first. For this, make a Step over Subroutine from the Debug menu of
UDE®. After that, the IP will be shown at the main function; the start-up code has been
executed.

The application can be reloaded with Restart Program Execution. If the program is
running already, it will be started immediately after the reload terminates.

Setting Breakpoints

Now, we assumed that a loaded application is error-free and ready for running. However,
for debugging purposes single step executions and breakpoints have to be performed to
watch program behavior and processor status.

To set a breakpoint in the TimeDemo program, either left-click with the mouse on the grey

column on the left of the Program window or activate a line in a procedure and then click
on the Hand symbol in the tool bar. A red-filled dot appears in the line indicating that the
breakpoint has been successfully set. Alternatively, you may also select the menu Views
– Breakpoints...

In the Breakpoint dialog, breakpoints can be added, enabled, deleted and type changed,
using the corresponding buttons. By clicking on the E/D (Enable/Disable), checkbox
toggles the breakpoint between active and suspended. Disabled breakpoints are
indicated by a red-shaped circle. Now start the application again. The application will be
executed until the first breakpoint in the execution path is reached. The application will be
stopped then immediately.

Note: The OCDS unit of the AURIX microcontroller supports an unlimited count of
software breakpoints, but only four hardware breakpoints. Software breakpoints are
realized by software code patching, which is only supported in writeable RAM areas.
Hardware breakpoints are supported by the OCDS unit directly and can be used in read-
only ROM areas only. Patching ROM areas (e.g. FLASH) is possible in principle, but not
supported by UDE® because of the vendor-defined limited FLASH programming cycles.

Another possibility to execute certain portions of code without setting a breakpoint
explicitly is by placing the cursor into the line where the application is required to halt and

!

!

Getting Started An Example with AURIX TC3xx 55 of 193

then select Debug – Run Program to Cursor from the menu or Run to Cursor (F4-
Button) from the context menu.

Core Registers

The Core Registers
window is opened by
the menu Views –
Core Registers or the
corresponding tool bar
button.

Perform a few single
steps to see the Core
Registers values
changing according to
the executed
instructions. If register
value has been
changed compared to
the previous state are
highlighted in red
color.

If the program is
stopped (e.g. between
single steps) you may
alter the content of
registers. Click on the
register's value in the
Core Registers window and enter the new value.

Peripheral Registers

Peripheral register values are changed in the same way as in the Core Registers window
(open this window by selecting the menu Views – Peripheral Registers). To add a new
register entry, select Browse Ins from the context menu of the Peripheral Registers
window and double-click on the Peripheral register from the list to insert it into the
Peripheral Registers window.

Tooltips show the address, the reset value of the current Peripheral Registers and further
information about the focused register. The expanded Peripheral Registers view contains
all available fields this register is composed off. The value can be changed by right-click
on the values and entering the new value.

Various registers are protected, which means that a special unlock sequence is required
to change the register value. UDE® can unlock these registers. Use the context menu of
the register name and disable the entry Write protect. !

56 of 193 An Example with AURIX TC3xx Getting Started

Viewing Variables

Viewing and changing global/static variables

All global and static variables from the
C/C++ source code may be observed
directly using the Watches window. Open
the Watches Window by selecting the
menu Views – Watches window or the
corresponding tool bar button.

The variables can be added by double-
clicking on <new variable> or using the
context menu of the <new variable> entry
via Browse Ins. The browser dialog shows
you all available global and static variables.
Click Add for adding a new variable to the
Watches window.

The variables are sorted in groups as
follows:

➢ Global Variables – shows all global
variables with global scope.

➢ Static Variables (at file level) – shows
only variables visible at a specific file.

➢ Static Variables (at function level) – shows only static variables visible at a specific
function.

➢ Static Variables (all) – shows all static variables, which are not global variables.

➢ All Global/Static Variables – shows all global and static variables.

➢ If the variable is expandable, i.e. it is a pointer or an array, clicking on the '+' sign in
front of the variable's name will expand it. This means, that the content of the target
location of the pointer or the content of the elements of the array will be displayed.
Variables can be expanded for more than one level.

Variable values can be changed easily by double-clicking in the value area or pressing F2
and typing in the new value.

Watch tips

Furthermore, UDE® offers so-called watch tips, which show you the content of simple
variables in the Program Window. Highlight i.e. the Seconds variable from the main()

function by a double-click, move the mouse pointer over and the content will be displayed
in a watch tip after a short waiting time.

Getting Started An Example with AURIX TC3xx 57 of 193

Viewing and changing local variables

Viewing local variables is provided by the Locals window that can be reached via the
menu Views – Locals. In this window, all currently valid local variables are displayed.
The value of the local variable can be changed in the same way as in the Watches
window.

Viewing Memory Locations

The Memory window, which is available via Views – Memory, displays memory areas in
the AURIX’s memory space and provides means to change. Select the displayed memory
area by setting the cursor in the address column of the Memory window and type in the
new address. Memory content can be changed by clicking on a memory location value
and typing in the new value. Changed values are marked blue before they are written
back to the memory.

The Memory window supports the viewing modes as Byte, Word, DWord, Double, Fract
and the ASCII representation of the memory area.

Leaving the Project

To leave the current Project, select File – Close Workspace from the UDE® menu. The
workspace with all settings will be saved automatically. If you want to save the current
project under a different project name, select Save Workspace As ... from File menu. In
the file selection box, the new workspace name must be selected and confirmed.

58 of 193 An Example with AURIX TC3xx via XCP Getting Started

An Example with AURIX TC3xx via XCP

Creating a new Workspace

In this chapter is shown, how to connect to Infineon TC39x B-Step board using an XCP
device. First launch UDE®, create a new workspace and select the XCP target
configuration for Infineon AURIX TC39x B-Step:

After selecting the correct XCP configuration file UDE® tries to connect to the target.
Probably, that will fail, because IP address and TCP port of the XCP device is not
configured yet.

Connecting to an Ethernet-based XCP device is only possible with knowing the
configured IP address and TCP port number of the XCP device. IP address and TCP port
of your XCP device can be configured / checked with the appropriate software tools from
your XCP device vendor.

If you have questions regarding getting to know the correct IP address / TCP port number
or how to configure these please contact the vendor of your XCP device.

If you encounter difficulties with XCP connection using UDE®, please contact the PLS
Support Team at support@pls-mc.com.

IP address and TCP port of the XCP device can be set in UDE® Target Interface.

?

!

mailto:support@pls-mc.com

Getting Started An Example with AURIX TC3xx via XCP 59 of 193

Open it via Config – Target Interface and press the Select button in the General tab:

In the Edit tab please select XCP Communication Device and set the correct IP
address and TCP port:

After pressing OK the necessary settings for the XCP connection are done and UDE® can
try to establish a connection.

60 of 193 A Multi-Core Debugging Example with TriCore/PCP Getting Started

A Multi-Core Debugging Example with TriCore/PCP

The HelloPCP program provides an example of how to use the PCP (Peripheral

Communication Processor) of the TriCore chip. It demonstrates the multi-processor
support of UDE®. When running, a flashing LED on the TriBoard is displayed while the
flashing pattern itself is defined by a string in the source code. The string is translated into
Morse code, which provides the flash pattern of the LED.

Please note in this example the PCP is the working horse serving the interrupts of the
GPTU. The PCP code is contained in the source file morse.pcp. The TriCore itself is

used only to initialize the PCP.

Creating a New Workspace with changed configuration

At first, a new workspace has to be created. Click New Workspace from the File menu
and choose a new file name in the opening file selection box. The next step extends the
target configuration with the PCP controller.

UDE® provides a number of prepared target configurations. For this example, the
TriBoard TC1796 configuration has to be copied and changed. Select the entry TriBoard
with TC1796 (JTAG) and click Copy. In the configuration box, choose a new file, e.g.
TriBoard_TC1796_PCP.cfg.

The Target Configuration Dialog will be opened. This dialog gives the user the possibility
to change the target hardware descriptions and settings.

Select the PCP entry as shown above, it enables the PCP debugging. Change the Target
Description to .. TC1796B and PCP (JTAG). Click OK.

Your workspace will be reconfigured and the workspace view shows two core debugger
entries.

Every window is connected to one of the cores only, except the command window. To
distinct between the cores, each window displays the core name as part of the descriptor
in the title bar, i.e. Controller0.Core and Controller0.Pcp.

!

Getting Started A Multi-Core Debugging Example with TriCore/PCP 61 of 193

If the connection is successfully established, the following messages will appear in the
Messages window:

Connection to TC1796 target monitor established: TriCore(Core),
ID: 200B8083h

Connection to TC1796 target monitor established: TriCore(PCP),
ID: 200B8083h

When both debuggers are launched, UDE® is ready for loading the application file
HelloPCP.elf.

Running the Program

For loading HelloPCP.elf enable only the Binary and the Symbols for Controller0.Core

in the Multicore / multi program loader dialog. After loading HelloPCP.elf into the TriCore

target system, two program windows are displayed. One of them is the PCP program
window, while the other is the TriCore program window. Toolbar Buttons and menu
commands always relate to the active debugger window.

To debug the PCP program, set a breakpoint in the PCP code, switch to the Core
Window and execute a Step over Subroutine. This will initialize the PCP. Then click on
Start Program Execution of the TriCore code.

Please note, that the sequence described above must be executed exactly in this order.
The background is that the start-up code transfers the PCP code to the PCP memory and
overwrites any software breakpoints. To give the UDE® the possibility to set a breakpoint
to the PCP, UDE® must have access to the PCP after the initialization. That is why the
first step must be a Step over Subroutine!

The PCP program will stop at the breakpoint. Now you may for example step through the
code, continue running the PCP program or watch the PCP registers.

HelloPCP Internals

The TriCore program initializes the GPTU0, the PCP and the port P0. At the end of the
program, the GPTU0 timer is started to provide periodic interrupts to execute the PCP
routines.

The PCP program may be interpreted as state machine. Each interrupt causes the PCP
to start in the following state (EXIT instruction with restart at next address). Each state
ends with setting GPTU0 registers to proper values. When the timer of GPTU0 overflows,
channel 1 of the PCP is restarted. This way, the PCP program will run infinitely and
continuously send the string defined by

const char morse_string[] ...

!

62 of 193 A Multi-Core Debugging Example with AURIX TC2xx Getting Started

A Multi-Core Debugging Example with AURIX TC2xx

Infineon’s 32-bit multi-core architecture AURIX (AUtomotive Realtime Integrated neXt
generation architecture) based MCU, part number TC277D, incorporates three TriCore
processor cores (version 1.6). The following chapter describes the debugging options for
three cores of the example architecture AURIX. Multi-core debugging for other
architectures is supported in a similar way.

Please run UDE® from the Window’s start menu.

Understanding a Multi-Core Configuration

UDE® supports several scenarios for Multi-Core debugging:

1. Several cores on one Chip using the same JTAG-Chain (AURIX)

2. Several cores on different Chips using the same JTAG-Chain

3. Several cores on different Chips using different Debug-Channels

The configuration is unchanged during a debug session and is stored in the *.cfg -File.

Configuration settings are managed via the Target Configuration Wizard.

Creating a New Workspace

At first, a new workspace has to be created. Click New Workspace from the File menu
and choose a new file name in the opening file selection box.

UDE® provides a number of prepared target configurations (Default button). This
example uses the TriBoard TC277D configuration. Select the entry TriCore AURIX –
Infineon – TC27xD Starterkit – TriBoard with TC275/TC277 D-Step (JTAG) and click
on Finish. In the configuration box, choose a file name, e.g. TriBoard_TC27xD_jtag.cfg.

Select the created configuration and click on Edit to modify the target configuration.

The default target configuration contains all information about the Core0, Core1, Core2,
GTM, ED and FLASH devices. Core0 is the master core (TriCore1.6P), Core1 and Core2
are slave cores (TriCore1.6E) of Core0. GTM support is disabled in this example.

To change a target or a core-specific property, select one of the Controller0 items and
click the Setup button.

Getting Started A Multi-Core Debugging Example with AURIX TC2xx 63 of 193

The General page of Core0 selects the communication device and contains the JTAG
access options. If more than one communication device is connected to the PC, it can be
specified via Use UDE Communication Device which one should be used. Otherwise,
the option Use default device / port is suitable.

The page Connect contains the connect options and the initialization commands on
connect.

64 of 193 A Multi-Core Debugging Example with AURIX TC2xx Getting Started

The page Reset contains the reset mode and the initialization commands on reset.

The pages Debug and Start / Halt contain more debug options and the start/halt
commands. Please see the UDE® help description for more information about the
meaning of each setting.

Leave the Target Interface Setup and click OK. If the connection is established
successfully, the following messages will appear in the Messages window:

Connection to TC27xD target established: TriCore(Core0),
ID: 501DA083h

Connection to TC27xD target established: TriCore(Core1)
Connection to TC27xD target established: TriCore(Core2)

If all debuggers are launched, UDE® is ready for loading the multi-core application
Timedemo.elf.

Preparing the Debugger

Windows, which are associated to a single core, use a default coloring of the title bar
and/or tabs in tabbed window containers. This default coloring can be customized to the
user’s needs. Open the menu Config – Debug Server Configuration – Framework –
Windows Tabs Color. Select one of the cores and change the assigned color. The
selected color is now used for each window associated with the selected core.

Getting Started A Multi-Core Debugging Example with AURIX TC2xx 65 of 193

Show, Hide and Group Windows-Related Perspectives

Debugging a multi-core system with many open debugger windows may lead into a very
confusing debug session. Perspectives are helping to keep the debug session clearly. A
perspective is a container for windows, which is visible at a certain point of time.

Perspectives can be activated using the toolbar menu.

The ‘+’ adds a new perspective, the ‘X’ removes it, the ‘gear wheel’ configures the
visibility of the toolbars, the dropdown menu selects a specific perspective.

A new perspective is cloned from the current active perspective, but can be adapted to
the requirements.

Loading a Multi-Core Executable

UDE® supports several options to handle executables for multi-core architectures:

1. One executable for all cores, combined in a single binary file.

2. Separate executables for each core, combined in a single binary file.

3. Separate binary files for each core.

UDE® handles these requirements in a multi-core / multi-program loader box, which
provides a switch matrix to assign executables to cores. Additionally, to selecting binary
files for cores, the dialog also provides switches to assign symbol information containing
files.

Select from the UDE® menu File – Load Program and load the file
<UDE_SAMPLE_DIRECTORY>\TriCore2\TriBoard_TC27x\MulticoreDemo\HighTec_IntRam
\TimeDemo.elf.

Because this is an example of a single executable, which is executed by each core, there
is only one entry for MulticoreDemo.elf. Select the binary check marks only for Core 0

(master core) in the Controller0.Core0 column, to avoid loading the binary code twice.
Select the symbol check marks for each core to assign symbolic information to each core.

UDE® will load and transfer all binaries into the corresponding core and the symbols to
the debugger symbol server.

Source File Management

If the debugger cannot find the source files specified in the symbol containing files, it can
request the location of the correct source path. This can happen, if the compiler’s-built
environment differs from the environment used by the debugging process.

The examples source files are located in the \src and \board subfolders. You need to

provide the location on request. UDE® will remember your decision and will not ask again
for this source path.

66 of 193 A Multi-Core Debugging Example with AURIX TC2xx Getting Started

Every entry of this relocated source is called Alias. The saved aliases of a workspace are
accessible via the menu Config – Debug Server Configuration – View Server –
Source Code – Aliases …

In some cases, the forced source alias may have changed. Use the dialog to delete the
affected entry. The next time the source file is used, UDE® will ask for the location again.

Source Path Replacement

The behavior described above is useful, if only few source file locations have changed. If
a complete source file tree is affected, you can give UDE® a replacement path, which will
be applied to all source file paths.

Use the menu Config – Debug Server Configuration – View Server – Source Code –
Path Management …

The dialog defines
a part for replacing
and a part for
including the new
source location.

You will now see
the source code of
the main function
from the sample
application. When
clicking with the
right-hand mouse
button into the
Program window, a
context button
appears to switch between Source code only and Source/Assembly code display via the
Mixed Mode entry.

Getting Started A Multi-Core Debugging Example with AURIX TC2xx 67 of 193

FLASH programming

In AURIX TC2xx architecture, only core0 is used to program FLASH memory. The
FLASH/OTP Programming Tool will be opened automatically, if code has to be
downloaded to FLASH memory. It can be opened manually, via menu Tools – FLASH
Programming.

Use the buttons Program All and Verify All to program and verify all FLASH memory at
once.

The FLASH/OTP Programming Tool supports Remap settings for download into
cached regions. Click on Setup ... button and select the page Mapping.

68 of 193 A Multi-Core Debugging Example with AURIX TC2xx Getting Started

The FLASH/OTP Programming Tool supports the Safe BMI header handling, too.

The AURIX UCB handling is also supported via the UCB button of the FLASH/OTP
Programming Tool.

Getting Started A Multi-Core Debugging Example with AURIX TC2xx 69 of 193

Core Selection

To select a specific core debugger, click into a core-specific window (with a colored frame
and/or tab) and the focus will be on this core debugger. The status bar at the bottom of
the UDE® workbench shows the currently selected core debugger (marked red in the
screenhot below). The state bar field also provides a context menu (right-click) for
selection of a core debugger. At last, the context menu of a specific core in the Target
Manager windows contains an entry to activate and focus this core.

This behavior of UDE® is highly configurable. Use the menu Config – Debug Server
Configuration – Framework – Switch Debugger to explore all options.

This screenshot shows an example configuration for a multicore workbench:

Core0 is halted and focused, Core1 and Core2 (slave cores) are inactive and not focused
(see the red marking). A Core Registers window is opened for each core.

70 of 193 A Multi-Core Debugging Example with AURIX TC2xx Getting Started

Single-Core Breakpoints in a multi-core environment

This single-core breakpoint example will set a breakpoint for the specific Core1, where

the Core1 will only halt if that core runs over the single-core breakpoint code. If the
other cores run over the same breakpoint address, nothing will happen.

The behavior of the other cores in the case of a stopped Core1 depends from the settings

of the multi-core run control group. All cores of the same group as Core1 are stopped

simultaneously. Use menu Config – MultiCore Run Control Configuration and set, that
the Run Control Group 1 has only member Controller0.Core0, the master core. So,

there is Controller0.Core1 in no other group contained and Controller0.Core1 will

stopped as single core.

To set the core-specific single-core breakpoint, open the source of the specific core. If the
program window for Core1 is not open already, use the Core1 Symbols window and click

on the source file name MulticoreDemo.cpp to open the corresponding Program

window. Right-click on line 319
 SYSTEM_Init();

in the program window of MulticoreDemo.cpp and use the context menu Insert a Single
Breakpoint to set a single-core breakpoint. Select Core0 (see section Core Selection

above) again, because only this core can be used for initialization in the AURIX TC2xx
architecture and start the program via Start Program Execution. This will run the
MulticoreDemo.elf on Core0. Core0 will start the slave cores Core1 und Core2

automatically. After a while, Core1 stops at the breakpoint (halted by user breakpoint),

while Core0 (running) and Core2 (running) are still running. After inspection of Core1, it

can be started again via Start Program Execution.

If it is wanted that all cores stop when Core1 stops, add Controller0.Core1 and

Controller0.Core2 into the run control group of Controller0.Core0.

Without defined multi-core run control groups, cores are running independently. Start
Program Execution / Break / Step-Into / Step-Over / Step-Out commands will regard
the active core / debugger only, while Reset will still regard all cores.

Getting Started A Multi-Core Debugging Example with AURIX TC2xx 71 of 193

Multi-Core Breakpoints

Multi-core breakpoints are useful in shared code. These breakpoints are associated to all
cores of a corresponding run control group.

Open the manager via Config – Multi-core Run Control Configuration. Select
Overview - Run Control Group 1 – Group Member and select Controller0.Core0 and

Controller0.Core1 as Used Debugger and Controller0.Core2 as Available

Debugger. Core0 and Core1 build a run group and are treated simultaneously in

debugging, while Core2 acts as separate core.

Reload, run and break the program. Core0 (halted by user break) and Core1 (halted) are

stopped simultaneously; Core2 (running) is still running (because it is not part of a run

control group). Select Core2 and stop it manually. Remove all breakpoints.

Reload Program via F7. Set now a new multi-core breakpoint via context menu Insert
Multicore Breakpoint in Core1 in line 319
 SYSTEM_Init();

Open the Breakpoint Window via menu Views – Breakpoints. The defined multi-core
breakpoint is assigned to Core0 and Core1 and is shown as follow:

Start the program execution. Now Core0 (halted by user breakpoint) is stopped by the

breakpoint condition, Core1 (inactive) was not yet started by Core0 and is inactive.

Continue the program execution by Start Program Execution. Now the Core1 (halted by

user breakpoint) is stopped by the breakpoint condition at the same code line. Core0

(halted) is stopped by the run-control group. Core2 is still running.

72 of 193 An AURIX TC49x/PPU Debugging Example Getting Started

An AURIX TC49x/PPU Debugging Example

The PPU (Parallel Processing Unit) of the AURIX chip is a fully programmable processor,
supporting scalar processing and vector DSP function capabilities. In this chapter is
shown, how to connect to Infineon TC4Dx-A board and debug the PPU core.

AURIX PPU debugging requires a DAP debug connection via UAD2pro, UAD2next or
UAD3+ communication device. Make sure that a suitable UAD, UDE® license and the
current UDE® version are available.

Preparations

In general, the PPU core can’t boot of its own on power-on. It always needs to be

initialized and started by an application running on host AURIX Core0. Hereby the AURIX

application has to copy the PPU application (binary image) to PPU CSM and start the
PPU.

An AURIX/PPU TimeDemo example application is available on request by PLS. Please
contact support@pls-mc.com to obtain this application if you are interested.

This AURIX/PPU TimeDemo example application is pre-configured to initialize PPU RAM
(PPU CSM) and load and wake up the PPU. It can be loaded and programmed to
PFLASH with UDE® as described in chapter about FLASH programming Downloading a
binary file.

Getting Started

First create a new UDE® workspace and select a target configuration file that suits your
target system (e.g. TC4Dx-A TriBoard): TriCore AURIX(TM) TC4x – Infineon – TC4DxA
Starterkit – TriBoard with TC4xD A-Step (COM variant) (DAP) and click on Finish.

mailto:support@pls-mc.com

Getting Started An AURIX TC49x/PPU Debugging Example 73 of 193

Select the Core0 and the PPU core to be loaded. The other AURIX slave cores are not

used in that AURIX/PPU demo, so no need to add them.

The AURIX/PPU TimeDemo example provides two binary files, one for Core0

<AURIX/PPU_Example>\TriBoard_TC4xx\TimeDemo_PPU_TimeDemo\HighTec_IntRom
\TimeDemo.elf

and one for PPU

<AURIX/PPU_Example>\PPU_ARC_EV71\TimeDemo\MetaWare_EV_TC4XX_IntRam
\TimeDemo.elf

Select from the UDE® menu File – Load Program and load these files. Make sure that
both *.elf files are activated for the corresponding core. Check the blue rectangle (Binary)
and green rectangle (Symbols) as shown in the dialog below.

Make sure not to load the binary of the PPU (blue rectangle), since the Core0 copies the

PPU program to PPU RAM. After successfully flashed the program and connected to
both cores the PPU is shown as inactive because it wasn’t started yet.

Now you can start Core0, the PPU gets woken up by Core0.

Both cores are member of the same MultiCore Run Control Group, if added in selected
both when creating the workspace. If any of them gets halted, the other core halts too.

The same goes for starting any of the cores. This behaviour is predefined.

74 of 193 An AURIX TC49x/PPU Debugging Example Getting Started

Multi-Core Run Control

If the cores Core0 and PPU should not start/stop simultaneously, these can removed in
Multi-Core Run Control Group.

Open menu Config – MultiCore Run Control Configuration. Use the << button to

remove a core from the group.

Program Execution Time Measurement

Currently, time measurement of PPU is only possible via Tricore Core0. Therefore select

Core0 and open Program execution time window via Tools – Execution Time Setup.

For measuring the elapsed time from breakpoint to breakpoint, enable Single step timer
mode (typically in Core0 Program execution time window) and enable time measurement

via Enable program execution time measurement.

Please have in mind, currently, time measurement is only usable via a Tricore core, if it is
also in the same MultiCore Run Control group like the PPU.

Getting Started An AURIX TC49x/PPU Debugging Example 75 of 193

Additional hints for PPU debugging with breakpoints:

After PORST the Tricore Core0 enables debug ability for PPU by clocking PPU und set PPU
in QM mode. That is done with the following init commands, located in the TC4Dx and
TC49xN target configuration file:

set PPU_CLC 0x0
set PPU_SMCTRL 0x0

Init commands can be viewed via menu Config – Target Interface ... – Reset and
modified via the InitScript editor.

In addition, there are some optional init commands that can be activated by removing the
remark tags if required:

//set PPU_RST_CTRLA 0x1
//set PPU_RST_CTRLB 0x1
//wait 500

With these init commands it is possible to reset the PPU on startup. After PORST the PPU

breakpoints (ARC Actionpoints) are disabled due to active Actionpoint Isolation. After
resetting the PPU that isolation is turned off and using breakpoints is possible. Doing that

PPU reset after controller reset is important for setting early breakpoints in e.g. PPU startup

code.

Please be aware that an additional PPU reset (e.g. by user software) will destroy the

breakpoints settings and early breakpoints are not getting reached.The PPU can be

debugged like any other AURIX/TriCore core and also simultaneously to other cores of
TC4xx.

76 of 193 A Multi-Core GTM Debugging Example with Power Architecture SPC58NG Getting Started

A Multi-Core GTM Debugging Example with Power
Architecture SPC58NG

32-bit multi-core architectures like TriCore, AURIX or PowerPC SPC58NG contain a
multipurpose Timer module called Generic Timer Module (GTM).

Because of the complexity of the GTM, this example will only introduce the debug
capabilities. At the beginning, an UDE® workspace will be created. Then, common
debugging operations, like the start-, stop-control and the multi-core behavior, are shown.
At last, it will dive into more debugging details of the GTM by debugging the Multi-Core-
Sequencer (MCS).

Please run UDE® from the Window’s start menu.

Creating a New Workspace

At first, a new workspace has to be created. Click New Workspace from the File menu
and choose a new file name in the opening file selection box.

UDE® provides a number of prepared target configurations (Default button). This
example uses the PowerPC SPC58NG configuration. Select the entry PowerPC – STM –
SPC58NG Evaluation Board – STM Chorus 6M SPC58NG-DISP Discovery Starter Kit
with SPC58NG84 (Jtag/Core2/Core0/Core1) and click on Finish. In the configuration
box, choose a file name, e.g.
stm_spc58ng84_cut2_chorus6m_discovery_starterkit_core2_core0_core1_debug_jt
ag.cfg.

Select the created configuration and click on Edit to modify the target configuration.

The default target configuration contains all information about the Core2, Core0, Core1,

GTM and FLASH devices. Core2 is the master I/O core (e200z425), Core0 and Core1 are

slave cores (e200z420) of Core2.

Please check that the GTM core is also enabled.

Getting Started A Multi-Core GTM Debugging Example with Power Architecture SPC58NG 77 of 193

Click OK. If the connection is successfully established, the following messages will
appear in the Messages window:

Core2, UDEDebugServer, Connection to SPC58NG84_CUT2 target established:
PowerPC Target, JTAG-ID: 0x11110041
Core0, UDEDebugServer, Connection to SPC58NG84_CUT2 target established:
PowerPC Target, JTAG-ID: 0x11110041
Core1, UDEDebugServer, Connection to SPC58NG84_CUT2 target established:
PowerPC Target, JTAG-ID: 0x11110041
GTM, UDEDebugServer, Connection to SPC58NG84_CUT2 target established:
GTM, ID: 00000000h

Please note that the GTM ID is always 0h after connect, because it is not enabled yet! If
all debuggers are launched, UDE® is ready for loading the multi-core GTM application
Timedemo_GTM.elf.

Preparing the debugger

Windows, which are associated to a single core, use a default coloring of the title bar
and/or tabs in tabbed window containers. This default coloring can be customized to the
user’s needs. Open the menu Config – Debug Server Configuration – Framework –
Windows Tabs Color. Select one of the cores and change the assigned color. The
selected color is now associated with the selected core.

Loading a Multi-Core Executable

UDE® supports several options to handle executables for multi-core architectures:

1. One executable for all cores, combined in a single binary file.

2. Separate executables for each core, combined in a single binary file.

3. Separate binary files for each core.

UDE® handles these requirements in a multi-core / multi-program loader box, which
provides a switch matrix to assign executables to cores. Additionally, to selecting binary
files for cores, the dialog also provides switches to assign symbol information containing
files.

Select from the UDE® menu File – Load Program and load the file
<UDE_SAMPLE_DIRECTORY>\SAMPLES\PPC\SPC84EG84_C2_VLE\Timedemo_GTM\obj-iRam-
MC\Timedemo_GTM.elf.

Because this is an example of a single executable, which is executed by each core, there
is only one entry Timedemo_GTM.elf. Select the binary check marks only for Core2
(master core), to avoid loading the binary code twice. Select the symbol check marks for
each core, except GTM, to assign symbolic information to each core.

78 of 193 A Multi-Core GTM Debugging Example with Power Architecture SPC58NG Getting Started

UDE® will load and transfer all binaries into the corresponding core and the core symbols
to the debugger symbol server.

Source File Management

If the debugger cannot find the source files specified in the symbol containing files, it can
request the location of the correct source path. This can happen, if the compiler’s-built
environment differs from the environment used by the debugging process.

The examples source files are located in the \src and \board subfolders. You need to

provide the location on request. UDE® will remember your decision and will not ask again
for this source path.

Every entry of this relocated source is called Alias. The saved aliases of a workspace are
accessible via the menu Config – Debug Server Configuration – View Server –
Source Code – Aliases …

In some cases, the forced source alias may have changed. Use the dialog to delete the
affected entry. The next time the source file is used, UDE® will ask for the location again.

Source Path Replacement

The behavior described above is useful, if only few source file locations have changed. If
a complete source file tree is affected, you can give UDE® a replacement path, which will
be applied to all source file paths.

Getting Started A Multi-Core GTM Debugging Example with Power Architecture SPC58NG 79 of 193

Use the menu Config – Debug Server Configuration – View Server – Source Code –
Path Management …

The dialog defines a
part for replacing and a
part for including the
new source location.

You will now see the
source code of the main
function from the
sample application.
When clicking with the
right-hand mouse
button into the Program
window, a context
button appears to
switch between Source
code only and
Source/Assembly code
display via the Mixed
Mode entry.

Core selection

To select a specific core debugger, click into a core-specific window (with a colored frame
and/or tab) and the focus will be on this core debugger. The state bar at the bottom of the
UDE® workbench shows the currently selected core debugger. The state bar field also
provides a context menu (right-click) for selection of a core debugger. At least, the
context menu of a specific core in the Target Manager windows contains an entry to
activate and focus this core.

This screenshot shows an example configuration for a multicore workbench:

Core0 is halted by user break and is focused, a breakpoint is set, but not reached. Core1,

Core2 and GTM are halted and not focused.

80 of 193 A Multi-Core GTM Debugging Example with Power Architecture SPC58NG Getting Started

Single-Core Breakpoints

Our first example will set a breakpoint for a single core at a single program location. We
will set a breakpoint for Core 0, leaving every other core running. If the program window
for Core 0 is not open already, use the Core0 Symbols window and click on the source
file name to open the Program window.

Right-click on line 71 in the Program window and use the context menu via
Insert/Remove Single Breakpoint to set a breakpoint. Now select Core2 (see section
Core Selection), because only this core can be used for initialization in the PowerPC
architecture. Now start the program via Debug – Start Program Execution. This will run
the Timedemo_GTM.elf on Core2. In the Timedemo sample, Core2 will start the slave

cores Core1 und Core0 automatically. After a while, Core0 stops at the breakpoint, while

Core1 and Core2 are still running. After inspection of Core0, it can be started again via

Debug – Start Program Execution.

To orchestrate the behavior of cores, one can use run control groups. Without run control
groups, cores are running independently. Start Program Execution / Break / Step-Into /
Step-Over / Step-Out commands will regard the active core / debugger only, while Reset
will still regard all cores.

Multi-Core Breakpoints and Stepping

A multi-core application may require that all or some cores be halted too, if one core
reaches a breakpoint, and/or that all halted cores must be started simultaneously. The
Multi-core run group manager helps you to set up the combination of halting and
starting of core groups. Open the manager via Config – Multi-core Run Control
Configuration.

Change the existing group Run Control Group 1 and add Controller0.Core2 and

Controller0.GTM to this group.

Select the desired MCU group members by moving the entry to the appropriate column.

Getting Started A Multi-Core GTM Debugging Example with Power Architecture SPC58NG 81 of 193

Break the program via Ctrl+F5. Core2 and GTM are stopped simultaneously; Core0 and

Core1 are still running (because these are not part of a run control group). Remove all
breakpoints. Restart Program via F7. Stepping through the program code will operate the
same way.

Inspecting Multi-Channel-Sequencer (MCS) Channels

The Generic Timer Module (GTM) contains several modules, which communicate over an
Advanced Routing Unit (ARU). The ARU connects all GTM modules, including the MCS,
to each other. Depending on the GTM version, a different number of MCS cores are
available, which can be used to modify signals that are routed to them. One MCS core
contains thereby its own RAM that is divided up to 8 channel programs. Each channel run
its own program, based on special sequencer instructions, which modifies the signals
routed to it. This section shows how different MCS cores and channels can be inspected.

At first, restart the Program via F7. If not already done, create a new Run-Control-Group
as mentioned above. Now select Core2and set a breakpoint to line 584 (behind the

initGTM() -function) in main.c. Select Core2 and run the program via Start Program

Execution. After a short time, the Core2 and GTM core stop.

Click on the GTM list box to select the desired MCS channel, here right in the image:

Using the right selector, the MCS and its channel can be selected. Open the Code
Window by selecting the colored tab corresponding to the GTM core to look for the
channel instructions as shown below:

The MCS Core Registers Window shows the current context register values.

After each MCS channel select, the IP inside the Code Window and the MCS Core
Registers Window contents are updated properly.

82 of 193 Using the MCDS On-Chip Trace with AURIX TC2xx Getting Started

Using the MCDS On-Chip Trace with AURIX TC2xx

Preparations

The further steps require AURIX target hardware containing a TC27xED emulation
device. Please check, that the board is equipped with an emulation device chip.

The following preparations are required:

➢ that the connection to the AURIX target is established, and

➢ that the samples application TimeDemo.elf for TC27xED is loaded.

Recording the first Samples

Open a new Trace window via menu Views – Trace. Open the UEC trace configuration
window via menu Tools – Configure Trace to create a trace configuration for recording
the program trace of Core0 of TC27xED. Execute the following steps to create the
required configuration via menu Tools – Configure trace … :

➢ Switch from Compact to Advanced Configuration library

➢ Drag the Init TriCore library element (1.0) to configuration area

➢ Change Memory Size to maximum value of 1024 kByte, change Syncmode to
mode Sync to set the best tick resolution between traced code samples

➢ Drag the Signal program address library element (2.1) to configuration area, set
Signal name to e.g. my_signal, select main function start address as comparison

address for Core X PC

➢ Drag the Actions on condition library element (5.1) to configuration area, browse
my_signal as signal name for If condition, select as action Trigger trace

➢ Drag the Emit actions library element (5.3) to configuration area, add emit action
store Core X PC and add ticks on

The MCDS trace configuration for this special task is now completed.

Getting Started Using the MCDS On-Chip Trace with AURIX TC2xx 83 of 193

Now the can be started the trace recording via toolbar icon or menu Tools – Start
trace... . The program execution can be started using the menu Debug – Start Program
Execution. As soon as MCDS trace memory is full, the Trace window will be filled.

The recorded samples are the instructions of program execution of core 0 of TC27xED
after call of main function.

Hints for Multi-Core Trace

The emulation devices (TC27xED) of the AURIX uController support parallel trace of two
cores. The Graphical trace configuration can be done by Universal Emulation
Configurator (UEC) using the Advanced library.

Here is an example for a suitable trace configuration:

84 of 193 Using the MCDS On-Chip Trace with AURIX TC2xx Getting Started

The screenshots shows an example of the resulting multi-core trace in a single Trace
window:

The multi-core trace can also be grouped in the Trace window, using core specific filter:

Getting Started Using miniMCDS Trace for AURIX TC2xx/TC3xx 85 of 193

Using miniMCDS Trace for AURIX TC2xx/TC3xx

The miniMCDS is a subset of the regular MCDS for the observation of just one trace
source and available on selected devices of the AURIX TC2xx and TC3xx family.
miniMCDS allows trace based debugging even on production devices. The available
trace memory is limited to 8 kByte.

A limited feature set of miniMCDS is supported by UDE® as part of the standard
debugger licence (UDE-TC-MCA). The extended feature set requires an additional trace
license (UDE-TC UEC).

Preparations

The further steps require AURIX target hardware containing a TC38x. The following
preparations are required:

➢ that the connection to the AURIX target is established, and

➢ that the samples application TimeDemo.elf for TC38x is loaded.

Recording the first Samples

Open a new Trace window via menu Views – Trace. Open the UEC trace configuration
window via menu Tools – Configure Trace to create a trace configuration for recording
the program trace of Core0 of TC38. Execute the following steps to create the required

configuration via menu Tools – Configure trace … :

➢ Drag the Use TriCore MiniMCDS configuration block to the configuration area.

➢ Set Trigger to pre and select Core0 from the Core dropdown box.

➢ Drag the Backtrace TriCore PC – trigger on address configuration block to the
configuration area. This block enables the code trace.

➢ Set Code address to DemoFunction1 (use … to browse for a code label). The trace

will be started at this address if Trigger is set to pre or stops the trace if Trigger is
set to post (see above).

➢ Enable Tick messages in order to get timing information for the recorded
instructions.

The miniMCDS trace configuration for this special task is now complete.

86 of 193 Using miniMCDS Trace for AURIX TC2xx/TC3xx Getting Started

The trace recording can be started now via toolbar icon or menu Tools – Start trace....
The program execution can be started using the menu Debug – Start Program
Execution. The trace recording is automatically stopped when the function
DemoFunction1 is executed. The trace is decoded instantly. Finally, the trace window

shows the code that was executed right before the DemoFunction1 was entered.

Getting Started An Example with C166S V2 / XC2000 via JTAG/OCDS L1 87 of 193

An Example with C166S V2 / XC2000 via JTAG/OCDS L1

Starting with UDE® Universal Debug Engine

This chapter describes how to connect to Infineon's XC2000 EasyKit. Create a new target
workspace and select the default target configuration XC2000 – Infineon – XC2000ED
EasyKit – EasyKit with XC2000-ED (JTAG-Debugging). The UDE® Universal Debug
Engine will now try to connect to the target system. If the connection is successfully
established, the following message will appear in the message window via Views –
Other windows – Messages:

UDEDebugServer: Connection to XC2000-ED target established: C166S-V2
Target, JTAG-ID: 0x0018A083

Automatic Variables Refresh

For observing variables while the target is running, UDE® supports automatic variable
refresh. Load the example <UDE_SAMPLES>\XC2000\EasyKit_XC2000M
\TimeDemo\Tasking_IntRam\TimeDemo.out and enable the Binary and Symbols loading

in the Multicore / multi program loader.

Open a Watches window, insert e.g. the array variable Buffer, and unfold it. Open the

context menu of the variable and select Refresh Period. The dialog Refresh Period for
Watches Entry will appear and allows configuration of the refresh periods for the
selected variable for a running and/or halted target. Enable the refresh for running target
and set the period time to 25ms. Click on OK button to close the dialog box and apply the
changed settings.

As the Buffer variable will be refreshed automatically now, you can watch how the

circular buffer is filled. Changed values are highlighted in red.

Trigger Functions

This chapter demonstrates how to use the OCDS unit of the XC16x derivative to
implement trigger functionality. Load the application timedemo.out like described before.

We want to create a trigger configuration that stops program execution, if a write access
to the variable Buffer[0] occurs.

In most cases, one can use the name of a variable or its memory location likewise in
UDE®. If you want to know the memory location, the Watches window can assist you. As
shown in the screenshot, the Address column shows the address of the Buffer[0] array

element. Additionally, the tooltip of the variable or its components displays the address
too, in this case 0xD0002838.

88 of 193 An Example with C166S V2 / XC2000 via JTAG/OCDS L1 Getting Started

Open the 'OCDS L1 Setup' dialog
using menu entry Debug – Setup
OCDS unit. Set the check mark 'User
Defined Action' in section Use
Trigger for Then click on the
button Trigger Setup.

This will open the Trigger Setup dialog. To detect write access to the variable Buffer[1]

(a single location at 0x0A0E4), we will use the Equal Comparator. Therefore, please select

the option Write Address as Event Source for the Equal Comparator. This condition
will cause a trigger event as soon as the write access occurs. To stop the application in
the event of the trigger, select Break User Application in the Event Action field.

To select the address to be monitored, click on the button Equal Comparator. In this
example, we want to set the address of the variable to be displayed directly. Select
Mode I and enter the address of the variable 0x0000A0E4 into the field Value.

After closing the dialog, the target is halted automatically. In the command window, the
reason is written:

UDEDebugServer: Target execution - halted by trigger event - program
location 0x0A0E4

Switch the program window to mixed mode view, the IP shows 0x0A0E4.

Getting Started An Example with MPC5567 via JTAG 89 of 193

An Example with MPC5567 via JTAG

Starting with UDE® Universal Debug Engine

When starting a newly installed version of UDE® for the first time, a firmware update
may be executed for the access device (UAD2pro, UAD2+, UAD2next, and UAD3+). This
may take some more time than usual for the “target connect” operation. Please DO NOT
power OFF or unplug the access device during this period!

In this chapter is shown, how to connect to NXP's MPC5567 board using a high-speed
connection via an UAD. First launch UDE®, create a new workspace and select the
default target configuration for PowerPC/MPC5567 Freescale MPC5567EVB Evalboard
with PC5567.

Loading and Starting of an Executable

Select the menu entry Load Program in the File menu, browse to folder

<UDE_SAMPLE_DIRECTORY>\PPC\MPC5567\timedemo\obj-iRam

and load the file Timedemo.elf

Please note, that the Instruction Pointer (IP) is placed at the beginning of the start-up
code of the loaded application. Now start the program via menu entry Debug - Start
Program Execution F5.

Automatic Variables Refresh

For observing variables while the target is running, UDE® supports automatic variable
refresh. For using this feature with MPC55xx, the NEXUS access must be enabled. To
enable the NEXUS access, open the Target Interface Setup dialog page E200 Core via
menu Config – Target interface ... – E200 Code and set the check mark at option Use
NEXUS .. to enable the access.

!

90 of 193 An Example with MPC5567 via JTAG Getting Started

Open a Watches window, insert e.g. the array variable Buffer, and unfold it. Open the

context menu of the variable and select Refresh Period. The dialog Refresh Period for
Watches Entry will appear and allows configuration of the refresh periods for the
selected variable for a running and/or halted target. Enable the refresh for running target
and set the period time to 25ms. Click on OK button to close the dialog box and apply the
changed settings.

As the Buffer variable will be refreshed automatically now, you can watch how the circular
buffer is filled. Changed values are highlighted in red.

Please note, if the integrated caching mechanism of the PowerPC MCU is enabled, the
view will only show the memory content. Modified cached values are not visible until a
cache write back is executed. A cache write back is executed, for example, if the program
execution will be interrupted by manual user break or breakpoint events.

Trigger Functions

This chapter demonstrates how the use the Power Architecture Book E defined triggers
of the MPC55xx derivatives for debugging purposes. Create a workspace and load the
application TimeDemo.elf as described before. We want to create a trigger configuration

that stops program execution, if a write access to the variable Buffer[0] occurs.

Open the Hardware Debug Resources dialog by menu Debug – Setup Trigger unit.
Select the tab Data Address. We want to use DAC1 as trigger comparator. Enter the
address of Buffer[0] into the address box. For simplification C-style expressions can be

used, so simple enter &Buffer[0].

Getting Started Creating hardware-specific Target Configurations 91 of 193

Enable User and SV (Supervisor) as Break Mode, select Write Access mode, Effective
address and Exact comparator.

Start the application.

The application stops, when the first read/write to Buffer[0] occurs. The controller state

shows the new state: Core halted by internal breakpoint.

Hints for using the MPC55xx via JTAG

For accessing memory on a running target, the NEXUS functionality is required. The
NEXUS module on the MPC55xx allows access to the physical system memory during
runtime. Therefore, a 1:1 mapping of the MMU is also required, since the MMU cannot be
disabled for the core. If a 1:1 mapping is not ensured, the NEXUS feature is not useable!

For accessing physical memory resources (e.g. Special function registers), the MMU is
analyzed by the debugger to find out the correct effective addresses. If the requested
physical address is not mapped, the debugger is able to set up the TLB entries inside the
MMU, when the special option Allow MMU setup for physical access inside of the
Target Interface's Setup is enabled.

Creating hardware-specific Target Configurations

The chapters above used Starterkits with predefined target configurations. In this chapter,
you will learn how you can build a target configuration with your custom specific target
hardware yourself. This is realized, using the Target Configuration Wizard.

First, you have to define the target hardware that may have multiple different
microcontrollers and memories.

In this example, a fictitious target equipped with one C167CR and two 29F010 connected
to /CS0 of the controller is used. Furthermore, the target has one external 16-bit sRAM
connected to /CS1. The communication channel is the ASC0 with RS232 driver. The
target controller is started via bootstrap loading.

➢ Controller: C167CR

➢ FLASH: 2x 8-bit FLASH NX29F010 at /CS0

➢ sRAM: 1x 16-bit RAM at /CS1

➢ Communication Channel: ASC0 via RS232

➢ Monitor: Bootstrap Loader Monitor

Creating a new workspace

A workspace always refers to a single target system. Choose File – New Workspace
from the menu and enter a new name for the workspace in the appearing dialog box.
Press the OK button to apply the entered name.

Invoking the Wizard

The next dialog is the Target Selection Dialog. Press the button New and click Next to
create a new target configuration. The next dialog allows both describing the new target
and choosing the controller family. If you do not enter a description, the file name will be
displayed in this dialog only.

92 of 193 Creating hardware-specific Target Configurations Getting Started

Press the Next button, when you are ready.

Selecting the Controller Derivative

The next step is the selection of the used derivative with the correct databases of the
used derivative. It is important to select the correct corresponding type of your derivative.
Select the C167CR derivative for this example and click Next.

Selecting the Target Interface

In this step, the target communication interface has to be selected to ASC0 based
monitor via bootstrap loading. The C16x Debugmonitor Interface must be selected.

Getting Started Creating hardware-specific Target Configurations 93 of 193

To specify the interface settings e.g. the baud rate and the communication channel
properties to the target click Setup.

Setting up the Target Interface

The dialog is divided in a number of pages for setting up the Target Interface. Please
check the content of each page for correct content.

Booting the controller by using the bootstrap loading mechanism of the C167CR will be
done within three steps.

1. Via the internal bootstrap loading the Second Level Loader is transferred to the internal
RAM and will be started.

2. This Second Level Loader loads the primary Boot Code.

3. The Boot Code initializes the controller system and loads the application or monitor
code.

General

Select and configure the used communication hardware.

In this example, a special Target Monitor using the bootstrap loading mechanism has to
be used. The various offered standard ASC monitors differs only in the location where the
monitor is located. For example, C167.ASCMon.BM67C0256 means a C167 ASC0 monitor

is located at 3F290h – 3FFFFh, below the 256 kByte RAM memory boundary. Click the ...

button to select a different standard monitor.

Select ASC as Debug Communication Channel.

94 of 193 Creating hardware-specific Target Configurations Getting Started

Connect/Boot

In this example, the settings of Connect Option are not relevant, because the UAD
cannot cause a reset on your target via an ASC0/TTL line. Leave the Connect Option on
default.

In this example, the standard Boot Code is used. The Use external Boot Code setting is
required in rare cases only, for the system loading process.

The Initialization Commands are executed by the Boot Code, during the system
configuration process. The commands initialize the memories, which are connected on
/CS0 and /CS1 via a demultiplexed 16-bit bus. The address range of the /CS1 memory is
mapped 0x00000 to 0xFFFFF. Finally, the EINIT instruction will be executed.

Refer to the UDE® manual for a complete set of initialization commands and to the C167
architecture manual for a description of external bus unit of the C167 microcontroller
architecture.

Close the Target Interface Setup via the OK button and click Next. Later modifications
can be made within UDE®.

Getting Started Creating hardware-specific Target Configurations 95 of 193

Configuring the FLASH memory

In the dialog Target Specify Memories, you must set the number of memories at least to
1, if you want to use FLASH programming support. Click Next.

Enter in the dialog Special Memories a unique name for the flash name and the
description. The description will be displayed when you select a memory device in the
FLASH/OTP Memory Programming Tool.

For each specially treated memory device, a special Handler is required. Select for
FLASH support the UDE FLASH/OTP Memory Programming Tool. Setup both the bus
mode organization of the chips and an address range, where the memory is visible.
These settings must correspond with the configuration of the external bus controller done
by the initialization command.

Click Next.

With these steps, the FLASH/OTP Memory Programming is prepared. Further steps are
required, if you are using the Programming tool. Please refer to the user's manual chapter
FLASH Programming for further information. !

96 of 193 Conclusion Getting Started

Finish the Wizard

Enter the name of the file where you intend to save the configuration of target. Usually
the Target Configuration files are stored in <UDE_DIRECTORY>/TARGETS folder.

By pressing the Finish button, you apply the settings to the target configuration. The
debugger loads all necessary components and connects to the target. If the following
message is displayed in the Command window, you were successfully.

UDEDebugServer: Connection to C167CR target monitor established:
bootmon167 V3.55 11/10

To edit this target configuration, you can select the menu Config – Target
Configuration. In the appearing dialog, you can modify the target configuration.

Conclusion

Congratulations! You have learned about the basic features of UDE®. This will enable you
to load and debug an application using UDE® with a Starterkit board as the target system.

You may now create your own applications using the GNU, the Tasking, the Keil or the
Greenhills C-Compiler and debug them with UDE®. As UDE® is constantly improved,
please check out our web site at https://www.pls-mc.com for the latest version of UDE®.
Additionally, if you have any questions or if you need any help regarding your
development tools we would like to encourage you to contact the PLS Support Team via
e-mail at support@pls-mc.com or via phone at +49 35722 384 0.

Thank you for using UDE® Universal Debug Engine.

?

https://www.pls-mc.com/
mailto:support@pls-mc.com

User's Guide Introduction 97 of 193

User's Guide

Introduction
The UDE® Universal Debug Engine is one of the most powerful development
workbenches available for the AURIX, TriCore, Power Architecture, Cortex, ARM7,
ARM9, ARM11, C166, XC166, XC2000, XE166, XScale, RH850, R-Car, SuperH SH-2A
and further microcontroller families.

The UDE® workbench lets you edit and organize your projects, supports you while
building the applications and lets you run and test your software on the supported
microcontrollers-based customer specific hardware or different evaluation boards in a
very convenient and cost-efficient way. The vast capabilities of the UDE® High-End
Debugger enable you to develop fast and reliable software as well as to get short turn-
around times for your microcontroller projects.

Hand-in-hand with our target access hardware the UDE® Universal Debug Engine offers
a flexible debug platform. It allows...

➢ High-speed and flexible access to target systems

➢ Full-featured on-chip debug modules, OCDS, DAP, EmbeddedICE, CoreSight, SWD
support

CASE Tool

Integrated Development

Environment

Compiler

universal debug engine

R

T

O

S

Editor

ICE
Target

Monitor
JTAGSimulator

 Evaluation Board Custom Specific Hardware

98 of 193 Architecture of UDE® Universal Debug Engine User's Guide

➢ Full code and data trace via MCDS, ETM, ETB, NEXUS, CoreSight and triggered
Transfer support

➢ Multi-Core Debugging

➢ Various Operation system support (RTOS)

➢ Support of further Third-Party Tools.

Architecture of UDE® Universal Debug Engine

The UDE® Universal Debug Engine is a new concept of our cross debugger based on a
set of standard components and core specific components. UDE® supports different
cores and multi core debugging. The system is built based on components to ensure
extension with additional cores and development tools. This way, the user is able to
extend the debug system due to custom requirements.

The UDE® concept splits the basic debugger tasks into three independent program parts:

➢ The user interface (debugger client) works as a client for both servers, generates
requests for target data access and symbol processing and displays the results of the
processed requests after receiving the ready signal.

➢ The symbol engine (debug server) works as an independent server that processes
requests to resolve symbolic relations of the program code. If the request is
processed, the requesting client receives a message that the resolution is available.

➢ The target communication server (target server) serves all requests for downloading
program code into the target and accessing target data to display target system
states (program variables etc.). The target core specific debugger engines implement
the basic debugger functions of a specific core (e.g. debugger engine for TriCore,
PCP, and C166 ...).

The partitioning of debugger tasks into client/server architecture significantly enhances
the performance of complex debugger tasks. To add debug support for additional cores is
very simple due to the client/server architecture. One target communication server and
usually one symbol server must be included to add debug support for a particular core. If
several cores use the program code of the same application, no additional symbol server

Debugger Client (Desktop Container)

ViewServer

Program

ViewServer

Watch

ViewServer

Custom

ViewServer

HTML

ViewServer

Program2

Debug Server

(Base Functions, Symbol Processing)

Target Server

(Core and Communication Components)

Debug Server 2

Target Server 2

MultiCore

Debugging

User's Guide Using On-line Help 99 of 193

is necessary for the core. The multiple independent engines enhance utilization of the
host CPU as well as the turn-around cycle of the debug process decreases.

Moreover, the architecture of an UDE® Debugger contains following parts:

➢ The desktop frame works as a container for several components. The container is
based on framework to instantiate windows of the basic debugger engines and export
interfaces to extend the user interface dynamically (e.g. add menu entries, tool bars).

➢ The windows implement standard debugger functions (Program window, Watches
window, Memory windows, Register windows etc.), programmable windows based on
page description languages (HTML) and application specific windows (special
windows based on e.g. COM components).

Using On-line Help
The UDE® Universal Debug Engine provides an integrated, context sensitive help. To
use this help simply press the F1 key. You may also select Help Viewer Window from
menu Help for viewing the UDE Manual.pdf. This manual introduces the architecture of
UDE® and describes the UDE® main features by examples.

Furthermore, please visit our Web site on the Internet at https://www.pls-mc.com. There
you can obtain the newest information and download the latest version of UDE®.

Project Management

Working with Projects

Projects let you organize your work more efficient by combining all target specific and
desktop settings in one workspace. This workspace stores all project relevant files and
settings of UDE®.

A main role of the project
management plays the source
files and their associated binaries.
These files are displayed in the
workspace window. The view is
subdivided into file names and
functions.

If the workspace window is
invisible, select menu entry Views
– Target Manager to open the
window.

In the Core Symbols window of
your current workspace, the
source files are grouped under the
folder Source files. If the folder
content is invisible, click on the [+]
item or double-click on the 'Source
files' folder to expand it. To
collapse a folder in the workspace
window, click on [-].

An easy way to open a new
source code window is by double-
clicking on the corresponding
source file entry. In a similar way,
it is possible to view a function of
the source code by clicking on the
function name displayed in the
folder Functions.

https://www.pls-mc.com/

100 of 193 Project Management User's Guide

Creating a New Project

If you want to build a new project, create a new workspace that contains all settings and
files of the new project. Select New Workspace from the File menu of UDE® and choose
a new file from the file selection box. Usually, the workspace file is located in the project
folder.

Note the possibility to create new folders in the file selection box: Right-click into an
empty area of the file selection field for the context menu and select New – Folders. This
way you can create new folders without the need of an additional Explorer window.

When starting a newly installed version of UDE® for the first time, a firmware update
may be executed for the access device (UAD2pro, UAD2+, UAD2next, and UAD3+). This
may take some more time than usual for the “target connect” operation. Please DO NOT
power OFF or unplug the access device during this period!

Select Target Configuration

After choosing the workspace file, you may select a predefined target configuration,
create a new or derive an adapted configuration.

Press the Default button to select a predefined configuration delivered with UDE®.

Press the New button to create a new configuration and follow the Configuration wizard.

Select a predefined target configuration and press the Copy button to derive a new
configuration from the selected configuration. This is recommending for adaptation of a
similar configuration.

Select a predefined target configuration and press Edit to change an existing
configuration. Please note that the changes are saved permanently.

Loading a Project

Open the File menu and select Open Workspace. Select a valid workspace file in the
opened file selection box. Usually, workspace files are named with the file extension
*.wsx.

To load the application binary file, use the Load Program from File menu and select the
binary file.

!

User's Guide Preparing a binary File 101 of 193

Saving Project Settings

Usually the project settings are stored automatically if the workspace or the UDE® will be
closed. However, if you want to create a new project that is derived from a current project
you may store the current project under a different path or project name. To do so,
choose menu File – Save Workspace as ..., select a new project path, and project
name.

Closing a Project

To close the current workspace, select menu File – Close Workspace. This will save all
settings of UDE®, view windows and their contents, paths and names of loaded files and
will close your current project. The project and its workspace are also saved when UDE®
is closed.

Command line options of UDE®

UDE® can be parameterized via command line interface to automatically open or create a
workspace and execute a start-up script.

Synopsis:

UDE[.exe] [-p<wsxfile>] [-s<scriptfile>]

Options:
 -p<wsxfile> ... open or create a workspace
 -s<scriptfile> ... run a startup script
 -d<logfile> ... write diagnostic output into file

Preparing a binary File
The UDE® Universal Debug Engine supports the compiler tool chain of various compiler
manufacturers. Please see the compatibility list for a selection of suitable compilers and
the compiler manual for correct usage of the compiler.

The following output formats of binary and debug symbol data are supported by UDE:

Output format Expected content

*.elf ELF/DWARF binary object file with debug information

*.out Binary objects file with debug information

*.axf ELF/DWARF binary objects file with debug information

*.abs Binary objects file

*.hex *.h66 *.h86 Intel HEX file, ASCII text

*.bin Intel binary objects file

*.sre Motorola S records file, ASCII text

*.s19 Motorola S records file, ASCII text

102 of 193 Preparing a binary File User's Guide

Compiler Support

The recommended file extension for the output file are *.out (C166 derivatives) and

*.elf (all supported derivatives). If you want use the HLL source code-debugging feature
in the debugger, the corresponding debug information can be linked to the executable file
or can be loaded as separate file. See the compiler manual for the correct options.

Compiler Support for C16x, XC166, XC2000, XE166

The UDE® Universal Debug Engine supports the Tasking OUT format, the GNU OUT
format and the Keil OMF166 format for binaries.

To build such a file applies the following compiler switches:

Compiler Command line options for output

Tasking C/C++ Compiler Compiler: "–g"

Keil C Compiler Compiler: "DEBUG"

GNU C/C++ Compiler (HighTec) Compiler: "–g"

The recommended file extension for the output file is *.OUT.

Compiler Support for AURIX, TriCore

The UDE® Universal Debug Engine supports the ELF/DWARF 1.1, ELF/DWARF 2 format
containing both the binary target pattern and the debug information.

To build such a file applies the following compiler switches:

Compiler Command line options for ELF/DWARF output

Tasking C/C++ Compiler for
AURIX, TriCore

Compiler: "–g "

PCP Assembler: “–gal”

Locator: "–f4"

GNU C/C++ Compiler for AURIX,
TriCore (HighTec)

Compiler (gcc): "–g –O0"

PCP Assembler: “–Wa, ––gdwarf2”

Wind River C/C++ Compiler for
AURIX, TriCore

Compiler: "–g –O0"

Greenhills C/C++ Compiler for
AURIX, TriCore

Compiler (cctri): "–G –dwarf "

Compiler Support for PowerArchitecture

The UDE® Universal Debug Engine supports the ELF/DWARF 1.1, ELF/DWARF 2 format
containing both the binary target pattern and the debug information.

To build such a file applies the following compiler switches:

Compiler Command line options for ELF/DWARF output

GNU C/C++ Compiler for
Power Architecture

Compiler : "–g –O0"

Wind River C/C++ Compiler for
Power Architecture

Compiler: "–g –O0"

NXP C/C++ Compiler for
Power Architecture

Compiler: "–g "

Byte Craft eTPU Compiler Compiler: "–g "

User's Guide Preparing a binary File 103 of 193

Compiler Support for Cortex, ARM7, ARM9, ARM11, XScale

The UDE® Universal Debug Engine supports the ELF/DWARF 1.1, ELF/DWARF 2 format
containing both the binary target pattern and the debug information.

To build such a file applies the following compiler switches:

Compiler Command line options for ELF/DWARF output

RealView MDK-ARM and
RealView Development Suite for
Cortex, ARM7, ARM9, ARM11

Compiler: "DEBUG"

Assembler: “––debug ––dwarf2”

GNU C/C++ Compiler for ARM7,
ARM9, ARM11 (HighTec)

Compiler: "–g –O0"

Wind River C/C++ Compiler for
Cortex, ARM7, ARM9, ARM11

Compiler: "–g –O0"

C Compiler for ARM7, ARM9,
ARM11 (ImageCraft)

Compiler: "–g "

The recommended file extension for the output file is *.elf.

HexFile Support

In addition, the simple Intel hex file and the Motorola S record format are supported.

104 of 193 Connecting the target system User's Guide

Connecting the target system

Before debugging an application, a debug communication channel to the target system
must be established. The following chapter gives you an overview about the offered
solutions of the UDE® Universal Debug Engine and its add-ons.

Overview about Debug Communication Channels

Communication Channel via JTAG, DAP, SWD, OnCE, COP interfaces

JTAG, DAP, SWD, OnCE, COP are examples of debug interfaces, which provides debug
communication channels to AURIX, TriCore, Power Architecture, Cortex, ARM, SuperH,
XE166, XC2000 microcontrollers.

Communication Channel via monitor-based ASC, SSC, CAN, 3Pin
interfaces

UDE® supports asynchronous and synchronous communication to the target system, too.
The monitors can be available as RAM monitor for bootstrap loading or as ROM monitor.
ROM monitor solutions are available whithin the Monitor Development Tool offered by
PLS.

Preparing the Communication

To open a communication channel, some preparations are required.

The primary selection of the communication channel is done by choosing a suitable
configuration, saved as *.cfg. You can select a new target configuration file while
creating a new workspace or you can modify an existing configuration via the Setup
Target Config button in the ‘connection failed dialog’ or the menu entry Config – Target
Configuration.

Create a new configuration

While creating a new workspace you can choose a new configuration for your target
hardware. The Select Target Configuration dialog will be shown.

User's Guide Connecting the target system 105 of 193

The UDE® Universal Debug Engine is equipped with some predefined configurations
already. With these configurations, you have a short way to the first example, so you can
derive a user-defined configuration from an existing Evaluation Board configuration file.

Push the button Default and a selection of predefined target configurations will be
offered.

Browse the best suitable configuration file, finish the dialog, save the configuration file.

Now it is possible to connect to the target system via button OK directly or to edit the
target configuration via button Edit before. After that, connect to the target system.

Later you can edit the target configuration via menu entry Config – Target
Configuration.

Select a RAM based monitor program

The UDE® Universal Debug Engine provides a set of target monitors as binary images.
The user may adapt the monitors to the demands of the target system.

The monitor will be downloaded via the on-chip bootstrap loading or a specialized on-chip
debug module to the target system RAM before every debug session.

106 of 193 Connecting the target system User's Guide

Select an ASC monitor program

Several predefined ASC monitors are available
as standard monitor in the internal monitor
database. The monitors differ regarding the
location of the monitor code and data area. To
select the monitor program, use the Target
Interface Setup dialog, page Monitor and check
Download Bootstrap Loader to Target and
Use Standard Monitor. With the ... button, you
can browse existing monitor configurations from
the database.

The monitor code will be downloaded via
bootstrap loading sequence. The properties, like
baud rate and TTL-RS232 driver usage, will be
taken from the bootstrap loading settings. To
change this properties, use the page Boot and
Init.

Custom defined monitors are possible with the
help of the Monitor Development Tool. Use such
monitors as external monitor in the page
Monitor. Note, that the correct type of monitor must be selected as Debug
Communication Channel.

Select a CAN monitor program

Select the CAN monitor as Debug Communication Channel. Furthermore, you have to
configure the correct baud rate and CAN-ID. Additionally, make sure, that the bootstrap
loading and initialization settings are correct in the page Boot and Init. Additional, ensure
the bootstrap loading and initialization settings are correct in the page Boot and Init.

Select a ROM based monitor

ROM monitors are located in the target’s non-volatile memory (FLASH or EPROM) and
will be started by power ON of the target board.

The build of a ROM monitor is supported by the Monitor Development Toolkit, offered by
the PLS. This toolkit provides the source code of our monitors prepared for the supported
compilers. On this way, the user can build its “own” monitor program.

Connect the Target system

After the preparations of the communication channel, you can connect the debugger with
your target hardware. Make sure, that the hardware is reset and correctly initialized. Push
the button Single retry and the debugger will connect the target via the new
communication channel.

After the successful connection, the following message is shown:

Success Core0::UDEDebugServer, Connection to TC22x target established:
TriCore (Core0), ID: 10201083h

Multi-Target Debugging

UDE® supports multiple targets/controllers. It is possible to debug the controllers
independently in one debugger instance. With the UAD3+ Multi AURIX Debug Adapter
the controllers can be synchronized. It is then possible to use the multicore run control
and break, single step or restart both controllers at almost the same time. This
functionality is achieved by using additional trigger pins from AURIX TC3xx controllers,
which are connected to the Multi AURIX Debug Adapter.

Please ask the PLS Support Team at support@pls-mc.com for detailed information and
further hints about Multi-Target Debugging.

mailto:support@pls-mc.com

User's Guide Downloading a binary File 107 of 193

Downloading a binary File

Download a multi-core and multi-program Application

To download an application select Load Program from menu File. In the following multi-
core / multi-program loader selection box, you can browse an elf/hex file and open it.

UDE® supports the loading of multiple binaries/symbols into one or more cores of the

target microcontroller. Via and button further elf/hex files can be added or removed.
For every loaded elf/hex file, it is possible to select the destination of binaries and
symbols.

Binary

The Binary is used primary for FLASH programming. The microcontroller architecture
decides, whether and which binary has to transfer in which core. Select the right
assignment. It is usually, that the binary has to load to one core only, because the
selected core can program the binaries into the FLASH memories of all cores.

Symbols

The Symbols are defined inside of the elf file are required to solved references in code
by the debugger. That is why the symbols of an elf file must be assigned to the core,
which contains these references.

Hex/ELF

The Hex/ELF option is used when a hex file is selected for download, which does not
contain any symbol information. In this case, a corresponding elf file with the symbol
information is searched and its symbols are included automatically. If the elf file is not
found, the user will be asking for it.

After that, the program can be downloaded into the target and the debugger is ready. The
IP is set to the default entry point of your program, usually the start-up code. The start
address also depends on the used target architecture. The debugger observes the time
stamp of the application file(s). If a binary target file is changed, e.g. by rebuilding after it
was loaded the debugger offers the possibility to reload the file.

Source File Management

If the debugger cannot find the source files specified in the symbol containing files, it can
request the location of the correct source path. This can happen, if the compilers-built
environment differs from the environment used by the debugging process. You need to
provide the location on request. UDE® will remember your decision and will not ask again
for this source path.

108 of 193 Downloading a binary File User's Guide

Every entry of this relocated source is called Alias. The saved aliases of a workspace are
accessible via the menu Config – Debug Server Configuration – View Server –
Source Code – Aliases …

In some cases, the forced source alias may have changed. Use the dialog to delete the
affected entry. The next time the source file is used, UDE® will ask for the location again.

Source Path Replacement

The behavior described above is useful, if only few source file locations have changed. If
a complete source file tree is affected, you can give UDE® a replacement path, which will
be applied to all source file paths.

Use the menu Config – Debug Server Configuration – View Server – Source Code –
Path Management …

The dialog defines
a part for replacing
and a part for
including the new
source location.

You will now see
the source code of
the main function
from the sample
application. When
clicking with the
right-hand mouse
button into the
Program window, a
context button
appears to switch
between Source
code only and
Source/Assembly
code display via the
Mixed Mode entry.

User's Guide Viewing Program Code 109 of 193

Viewing Program Code

The UDE® Universal Debug Engine features the viewing of program code in C/C++ and
Assembler level and provides the view of the program from three different perspectives. It
shows the source files, the functions and the sections of the loaded program. The
workspace window helps you to navigate into the parts of the program.

Note: UDE® provides the view of the source code parts located in the program sections
by default. For viewing of code outside of the program location, you may use the single
program window view.

Workspace

The workspace window shows all program specific information and simplifies the
navigation through the program. The project is displayed as tree control with source files,
functions and sections. You can expand and collapse the folders by left clicking on the [+]
and [-] Symbols.

If no workspace window is visible, open it via menu Views – Target Manager.

Header files / Other
Source files

The folder Header files / Other / Source
files lists all sources of the current project.
With double-click you can open the source or
bring the source window to the top.

Functions

In the folder Functions all C/C++ functions of
the loaded program are displayed. By double-
clicking on an entry in the workspace window,
the cursor is set to the corresponding line in
the source code windows.

It is possible to set single and multicore
breakpoints at the function’s entry point via
context menu.

Sections

Sections are consecutive memory areas of
code or data. In the folder Sections, all
allocated memory areas are listed, also the
non-C/C++ parts of the program as the
startup code, vector table and so on.

Breakpoints

Breakpoints are listed as reference to a
source location. The context menu allows the
editing, disabling and removing of each
breakpoint as well of all breakpoints.

Data Breakpoints

Data breakpoints are listed as reference to a data location. The context menu allows the
editing, disabling and removing of each breakpoint as well of all breakpoints.

!

110 of 193 Viewing Program Code User's Guide

Source Code Window

In the Source Code window, the source code is displayed. The UDE® Universal Debug
Engine supports a C/C++/Assembler source-oriented view mode and a disassembly view
mode. Both display modes can be merged as Mixed Mode. If no C/C++/Assembler code
is available, UDE® shows disassembled instructions per default.

To switch between the view modes C/C++ and C/C++/Assembler, use the context menu
entry Mixed Mode.

C/C++ oriented view mode

The yellow pointer indicates the current location of the IP. After each step, the position is
updated. The solid red circle shows that a breakpoint is located at this position. You can
only set breakpoints to C/C++ source line indicated with a small blue dot or to assembler
lines. The small blue dot indicates that the compiler has generated machine code for this
C/C++ source line.

The Source Code window supports an IP history, and displays the last five IP entries as
highlighted lines in customizable color shades. Use the Refresh/Properties entry from the
context menu, to customize this and other colors.

C/C++/Assembler mixed mode

The picture below shows the example from above in Mixed Mode. Each C/C++ source
line is shown with the corresponding machine code lines. The breakpoint indication is set
to the real
address
location in
the
machine
code.

User's Guide Viewing Program Code 111 of 193

Disassembly (complete range) window mode

In Disassembly (complete range) window mode, a single Program window displays
the target memory content as machine code with symbolical information (code labels,
C/C++ source lines, etc.), if available. If a source file was not found by the debugger
automatically, the file name and source line number will be displayed. In this case, a
mouse double click on the source line opens a file dialog to browse in the file.

The Single Program Window mode can be switched on/off in menu Views –
Disassembly (complete range) and/or with the corresponding tool bar button.

Disassembly mode

The Disassembly view mode is used only, if no source is available.

Printing of program code

Via menu File – Print or the shortcut Ctrl+P the content of the Program window can be
printed via the system printers. It is possible to print all pages, a set of pages or
selections. All view modes are supported.

112 of 193 Running a program User's Guide

Running a program
After successfully downloading the program to the target, the program can be started.
The IP is set automatically to the first instruction of the code. For example, in the C166
architecture, the address 0x0000 is used. If available, the programs entry point can also
be read from ELF file or target register and/or memory locations.

To start your program, use the menu Debug – Start Program Execution, or the F5 key.

Your program will stop under following conditions:

1. A breakpoint is reached.

2. A manual user break is made via menu Debug – Break Program Execution.

Note: Usually the compiler implements code for the case that the program returns from
the main function. Often it is implemented as an infinite loop, so that the program will
continue running after the main's return. A solution for that problem is using a breakpoint
at the last return instruction.

Inline Assembler

The integrated inline assembler allows the
change of several machine instructions. It is
available in program windows in mixed mode or
disassembly mode only.

To input a new machine instruction, set the
mouse cursor to the assembler line and use the
context menu. The entry Integrated Assembler
allows to start the Inline Assembler. In the
following dialog box, you may input the new machine instruction. Push the button OK and
the new instruction will be written into the target's memory.

Attention: If the new instruction does not fit in the alignment and length of the original
instruction, a further instruction may be inserted with non-valid code. Always verify the
inserted instructions carefully!

Viewing and Modifying of Core Registers
The UDE® Universal Debug Engine enables you to display and modify the complete
register set of the current microcontroller derivative in different ways. In addition to the
predefined Core Registers window and to the configurable Peripheral Registers window
UDE® offers the feature of a user-definable HTML based extension window.

Kinds of Core Register windows

Description of SFR, CSFR and GPR Registers

Core Special Function Registers (CSFR) control the operations of the microcontroller
core and provide status information about core operation. The General-Purpose
Registers (GPR) complete the CSFRs with a set of multifunction registers. All other
peripheral registers of the used derivatives (except the CSFRs and GPRs as stated) are
denoted as Special Function Registers (SFR).

Core Registers window

The Core Registers window displays a selection of CSFR and GPR registers of the
target controller. It allows a fast access to the PSW, IP, Address and Data Registers. It is
not possible to configure the view of the register set for the Core Registers window.

!

!

User's Guide Viewing and Modifying of Core Registers 113 of 193

Peripheral Registers window

The Peripheral Registers window allows a more flexible view to the registers. You can
select any free collection of CSFR, SFR and GPR registers to be displayed in the
Peripheral Registers window. This way, a simple custom specific view is possible.

HTML window

Maximum customization is offered by the HTML Document window. It allows creating
customer-specific HTML documents, embedding UDE® ActiveX-controls, user
components and scripts with access to the UDE® Object Model. This allows you to
visualize and control aspects of your target system in a more understandable and
attractive way.

Core Registers window

To open the Core Registers window, use the menu Views – Core Registers. A
predefined selection of CSFR and GPR registers of the target controller will be shown.

Changing the Core Register content

To modify the value of a register in hexadecimal mode move the mouse cursor over the
target register content and double-click. An edit box with the content will open and allow
you to modify the register value. To enter the value, push the <RETURN> key or click
with the mouse outside of the register box.

Color coding

The register values appear in three colors indicating the current state of the value.

Register Value Color State of the Register Value

Red Value has been modified by the program during the last step

Blue Value was changed by the user but not yet written into the
target

Black Value was not changed

Note: For writing the user-changed value into the target, click outside the edit box, but
inside the Core Registers window or push the <RETURN> key. Otherwise, the value will
not be written into the target.

Peripheral Registers View

Creating or changing a
Peripheral Registers window

In the Peripheral Registers window all
registers of the CSFR-, GPR- and SFR-
sets of the current microcontroller can be
displayed and modified. To open the
window, select Views – Peripheral
Registers from the menu.

For selecting or deselecting of registers,
simply use the context menu via a right-
click on the Peripheral Registers window.
Now click on the Browse menu item to
open the Register Selection dialog
window. All available registers of the
current microcontroller will be displayed in that window. They are assorted according to
the peripherals they belong.

!

114 of 193 Viewing and Modifying of Core Registers User's Guide

To select a register, expand the list and scroll to the special entry for that register. Click
on Select or simply double-click the entry to insert it into the Peripheral Registers
window. A ToolTip will give you a short description of every register in the list.

If the Expand checkbox is activated, the new register is automatically expanded in the
Peripheral Registers window. If a register is already in the Peripheral Registers window, it
is marked bold.

To remove a register from the Peripheral Registers window, move the mouse over the
register and open the context menu via right click. Then select Delete to remove the
entries in the Peripheral Registers window.

Changing the layout

The Peripheral Registers window displays the registers and the values in a table format.
Two columns on the left, display the name and the current value of the complete register.
If you move the mouse over the name, a short tool tip will show you the address, the
reset value and a short description of the register.

If you expand a register, the fields and bits, it is composed of, will be shown in columns
right of the name and current value of the register. The names of the fields correspond to
the names in the controller’s manual. The current value of each field is shown in a
hexadecimal value and an interpretation of the setting.

The following figure displays a Peripheral Register window with an example register
added to the window. The P00_OUT register is expanded and you can see all the bit fields

and the interpretation of the current settings.

It is possible to display more than one-bit field per row. This is useful if the register has a
great number of fields (e.g. port registers). You can select 1, 2, 3 or 4 fields per row. To
change the layout, you can use the context menu and go to Layout. In the submenu,
select one of the alternatives. You can also change the order inside the Peripheral
Registers window. Move the register per Drag ’n Drop from one location to that place that
you want.

The layout of the Peripheral Registers window content can be exported and imported via
Content from the context menu.

Changing the register content

To change the register content, you have two options. The first one is to change the
complete value for a register. To do this, select the register (complete row will be marked
blue) and move the mouse cursor over the register value (second column). After that
open the context menu via right click. Select Change will prompt a cursor inside the
value. Now you can modify the data. Press return to accept the new data and to write it
into the target. As a shortcut, press F2 to enter the change mode.

User's Guide Watching Variables 115 of 193

The second option is to change only a single component of the register. Expand the
register to display all fields. Then select the field that you want to change, move the
mouse cursor over the value and open the context menu. Now you can select one
possible setting for this special field from the menu or select Change to enter a
hexadecimal value manually. To enter the change mode, you can use the shortcut F2

Note: Some registers have a lock symbol left to their name (e.g. the BIV register in the
figure above). These registers are EndInit protected. To change their values, you have to
unlock them first with the entry Write protect from the context menu. If this option is
disabled, the lock symbol is in an unlocked state, you can change the data and the
Debugger performs a special access cycle to write the value to the target.

Saving and Restoring

If you want to save your current window configuration for later use or for other projects,
you can use the Content option from the context menu. Select Save from the submenu
opens a file dialog where you specify the filename. To load the Peripheral Registers
window content again, select Load from the context submenu.

Color coding

The register values appear in two colors indicating the current state of the register value.

Register Value Color State of the Register Value

Red Value has been modified by the program during the last step

Black Value was not changed

HTML View based on the UDE® Object Model

The HTML view is suitable for visualizing and controlling of contexts of custom specific
target hardware.

Note: All HTML windows are interactive only, if they are running in the UDE®
environment. That is why the HTML window of UDE® must be used.

The online help system contains a detailed description of the UDE® object model
illustrated with many examples. The documentation can be found at

<UDE_DIRECTORY>\Help\UdeObjectModel.chm

Watching Variables

The UDE® Universal Debug Engine features two kinds of windows for viewing the
contents of C/C++ variables.

1. The content of the Watches window can be defined by the user. All types of variables
(automatic, static and global) are possible.

2. The Locals window shows all-automatic and function/block local static variables that
are valid in the current scope.

!

!

116 of 193 Watching Variables User's Guide

Watches

You may open the Watches window by clicking menu Views – Watches.

The Watches window content can be defined by the user. Adding of variables may be
done via right clicking in the Name column and using the context menu entries Browse or
Expression. Alternatively, push the Ins button for selecting a variable from the variable
list or the F2 button for editing the name of the variable.

Expandable variables, i.e. pointer and array, are shown with a [+] / [-] flag in front of the
variable. Use this flag to expand/collapse the variable's elements. The view format of the
variables value can be selected from decimal, hexadecimal and ASCII. Click on the Value
column and select the format from the context menu. The window has optionally
selectable columns for displaying the variable’s physical address, a second display of the
value (in a different format) and the minimum and maximum of the value seen.

Variable values can be easily changed by clicking in the value area and typing in the new
value. Additionally, the context menu entry Change and the button F2 are usable.

Note: The address in the first line of an expandable variable is the base address of the
variable. In the example above, the Buffer variable is an array. The first line value entry

0xD00001B4 points to the base address of Buffer in the target's memory.

Watch Expressions

In the previous section, the variables have been selected by name from a list. This
section describes how to define watch expressions, to manually select variables and/or
parts of it. The expressions shown below can be entered in the Watches window into a
line with <new variable> in it.

Global Variable description

Syntax

VariableName (global)
VariableName#

The second form is for compatibility reasons to fast-view66 only.

Example

g_nCount (global)

Module static variable description

Syntax

VariableName [source_file]

Example

nLastTime [time.c]

!

User's Guide Watching Variables 117 of 193

Function static variable description

Syntax

VariableName [source_file]:{function}

Element Description Example

source_file Name of source file with extension and without
path (A relative or absolute path from the
command line of compiler is also possible but
has to match exactly)

..\time.c

v:\time.c

function Function name

Example

nLocalCount [time.c] : {timer_overflow}

Global, static variables and parts of it

Global and static program variables are variables with a fixed address, which means not
stored in registers or on the stack. Such variables and parts of them can be described in
common C-Syntax, similar to the expression in a C program.

Syntax

?(<C variable or part of it>)

Examples

?(abyBuffer[5])
?(timeStruct.hour)
?(arrayOfTimeStructsInstance[4].hour)

Real expressions

Real expressions do not have a fixed address. These expressions consist of two or more
global or static program variables and may contain C-operators or constants. They can
be described in common C-Syntax, similar to expressions in a C program.

Syntax

?(<C expression>)

For compatibility reasons to former products, following inline function in expressions is
supported

fconvert("<double_scale_factor>[,<double_offset>]",<C expression>)

<double_scale_factor> and <double-offset> are in %G syntax.
<double_offset> default value is 0.
<C expression> is integer expression.

This inline function will be converted after input to following expression

(<C expression>)*<double_scale_factor>-<double_offset>

Examples

?(timeStruct.hour*60)
?(timeStruct.hour*60+timeStruct.minutes)
?(arrayOfTimeStructsInstance[i+1].hour)
?(i+3)

Please note, that ' i ' can be a variable of global or static scope.

118 of 193 Watching Variables User's Guide

Real expressions with alias name

Real expressions with alias name refer to real expressions, as described before, with an
additional alias string for displaying the value assigned.

Syntax
?("<printf format string one format specifier>", <C expression>)

Input Examples Output Examples

?("%d minutes left",
timeStruct.hour*60+timeStruct.minutes)

73 minutes left

?("Temperature: %G °C",((a+b)*2)/30) Temperature: 47.21 °C

Description of watches content in a file

It is possible to describe the watches window content in a text file. The file can be loaded
and saved via Load/Save in the context menu in the Watches window.

Syntax description

Every line contains one watch variable description or watch expression as described in
the previous sections. Blank lines and comment lines are allowed. Comment lines start
with a semicolon character (';') as the first non-whitespace-character of the line.

Adding Variables and Expressions using Select Watches
Dialog

This sizeable dialog lets the user select static and global variables (all variables with fixed
address) and complex expressions using these variables of loaded programs to the
Watches window.

The dialog contains two tabs:

➢ Variables Tab - This dialog page displays global and static variables, which can be
added to the current Watches window. Variables are sorted by scope: Global
variables, Module static variables, Function static variables, All static variables and a
list of all global and static variables. Within the scope, the entries are sorted in
alphabetical order.

➢ Expressions Tab - The expression tab is the viewer for the global debugger
Expression Clipboard. It shows user defined expressions from Watches and Graph
window and expressions loaded via Load button from *.wat or *.wax files. An

expression can added to the Watch or Graph window from here.

User's Guide Watching Variables 119 of 193

If expressions contain only one integer variable, this variable is extracted automatically
and can be selected separately.

This expression itself enables an additional display feature, which is called Advanced
Expression Resolution:

This means the parallel display of multiple values for the expression, which contains only
one integer variable. This allows displaying of the calculated value of the expression and
of the corresponding integer variable. To use the Advanced Expression Resolution
enable it in the Properties – View Servers – Watch&Locals Windows – Configuration
of the Watch window. Following additional implicit functions are available for such
expression in the Watches window:

➢ Formula simplification
➢ Recognition of such formula type
➢ Automatic extraction of integer variable
➢ Modification of expression and variable
➢ Recalculation and changing of integer variable in target, if expression value is

changed

Locals

Open the Locals window by clicking Views – Locals. The Locals window displays all
automatic and function/block local static variables defined by C/C++ scope rules. This
view is not configurable. The variable values will be refreshed automatically after a
debugging step. The display of variables is comparable to the Watches windows and
modifying the values, will operate in the same way.

Automatic variable content refresh

UDE® can refresh the variable content during all states of the target, assuming the target
is in a connected state. Via the context menu, the automatic refresh period can be
configured. A manual refresh can be issued with the F11 key or the corresponding
context menu entry.

120 of 193 Stepping and Breakpoints User's Guide

Stepping and Breakpoints

Overview

In general, breakpoints are used to stop a running target system at a user defined
program state. Breakpoints help you to follow the program flow and allow you to see the
current program and processor status. In short, they are helpful to observe the behavior
of the program.

With the support of the OCDS modules of C166CBC, AURIX, TriCore, UDE® offers some
new features of debugging. The OCDS L1 module can be programmed as a user defined
trigger, supports hardware breakpoints, stops the microcontroller when a target read/write
access occurs and stops in dependency of the ALU result.

Following the program flow

The UDE® Universal Debug Engine supports the stepping through the program in a very
comfortable way.

Many features are available for controlling the program flow. You may use the menu
Debug or the debug tool bar for selecting the matching feature.

Step into Subroutine F8
Step into the Subroutine means that all code lines are executed step by step. The
debugger will follow the control flow by stepping into subroutine calls.

Step over Subroutine F9
Step over the Subroutine means that all code lines are executed step by step, but
the debugger will not be step into subroutine calls, but to the line after the subroutine
call. This means, the called subroutines are executed, until they return to the
currently executed subroutine

Step out Subroutine
If the IP is located within a subroutine, the Step out command jumps to the calling
procedure of the subroutine.

Run Program to Cursor F4
The program is started and runs until the IP reaches the location defined by the
current cursor location.

Please bear in mind, if the control flow encounters a breakpoint during a run to cursor,
step over or step out, the target will still be stopped.

Stop the program at a
specified location

The UDE® Universal Debug Engine allows
setting breakpoints in the program manually.
These breakpoints stop the execution of the
program, if the microcontroller reaches this
location. Breakpoints are either absolute or
conditional. Additionally, data breakpoints are
supported by some targets.

The breakpoint dialog is reachable via menu
Views – Breakpoints. It gives you an
overview about all breakpoints and allows
modification of locations and break conditions.

Absolute Breakpoints

An absolute breakpoint stops the program at a
specified target location without any
conditions. Breakpoints can be set via the

User's Guide Stepping and Breakpoints 121 of 193

context menu of the program window. Set the cursor to the program line and open the
context menu by a right click. The entry Insert/Remove Breakpoint sets or clears a
breakpoint at the specified program line. A set, enabled breakpoint is displayed as solid
red dot in the symbol column left to the program line. The entries Enable
Breakpoint/Disable Breakpoint enable or disable the specified Breakpoint. Disabled
breakpoints are shown as red circles.

Conditional Breakpoints

Conditional breakpoints are used to halt a program based on a predefined condition. To
configure breakpoint conditions, use the breakpoint dialog, reachable via menu Views –
Breakpoints ...

Data Breakpoints

UDE® supports the usage of data breakpoints, if on-chip debug support on target MCU is
available (e.g. OCDS). This means that the program will stop, if a read or write access to
a memory location was executed. Data breakpoints can be set in Watches and in
Memory window.

The context menu of a Watches and Memory
window contains an entry for setting data
breakpoints. This option is available only, if the
connected target supports data breakpoints. It can
be used at one or more selected main and child
entries in all columns except for the <new
variable entry>. The memory range for the data

breakpoint consists of the start address and the
length of the selected entry. If the base entry of a
complex data type (e.g. structure or array) is
selected, the data breakpoint will have the range of
the complete entry. The breakpoint can be set on
Write, Read or Read/Write accesses. All data
breakpoints can be enabled, disabled or cleared
together.

Data breakpoints can be used in the Memory
window in the same way, the same context menu
entries are available. These breakpoints are
shown with red marks, analog to code breakpoints.

Breakpoints window

To modify code and data breakpoints open the Breakpoints window via Views –
Breakpoints.

Software breakpoints are microcontroller instructions that will cause an (debug) interrupt
or trap. To set a software breakpoint, the program code has to be modified. From this
follows, software breakpoints can only be used in parts of the program, which are located
in a RAM memory area.

Hardware breakpoints are only available by the support of specialized hardware
architecture. Hardware breakpoints can be used in all kinds of memory systems.

122 of 193 Stepping and Breakpoints User's Guide

Note: The hardware breakpoints are a limited resource. That is why not all breakpoint
constellations are solvable with hardware breakpoints, i.e. breakpoints in complex case
expressions. The debugger will use hardware breakpoints automatically, if debugging
programs, located in FLASH memory. If too many hardware breakpoints are used by user
specified breakpoints, the debugger cannot perform debug steps.

To modify the code and data breakpoints use the context menu of the specified
breakpoint.

Loop qualified breakpoints – Loop qualified breakpoints will cause a microcontroller
stop after a predefined count of loops over the breakpoint location. The checkbox Loop
Counter enables the condition for the selected breakpoint. The value shows the current
loop count and the Goal box defines the endpoint. Both values are editable. Counting the
loops is done at the host side, thus the user application is stopped and eventually
restarted if the program counter passes the given location.

Condition – Enter a C-Expression here. The expression is evaluated each time the
program counter passes the location of the breakpoint. If the result of the expression is
not equal to zero, the user application is halted.

Macro – If the user application is halted due to the breakpoint, the macro with the
specified name will be executed. Please refer to macros and UDE® Object Model how to
write and load macros.

!

User's Guide Viewing Memory Locations 123 of 193

Breakpoint identifier

Assembler Breakpoints are defined at their physical address location at assembler level.
However, High-Level-Language Breakpoints have a reference to the source code,
specified via module, function, source code line and so on. That is why the breakpoint
description of an HLL-Breakpoint is more complex.

Syntax description

'function {source_file}.line[+]';module[,module2...];line_range;
line_offset;[address_offset];

'label [+ address_offset]';module;

address

Element Description Example

function Function name quick_sort

source_file Source file name sort.cpp

line Line number - A plus sign (optional) means that
the breakpoint is near the corresponding address
only and it is not a high-level language breakpoint
(Assembler breakpoint). Assembler breakpoints
have one address only.

50

module Module name - Module names separated by
commas.

SORT

Element Description Example

line_range
High-level language breakpoints at source lines
can cover different code ranges. This is the
position number of the corresponding code range.
The number starts with one and increases with
growing addresses.

line_offset This is the line number offset from start of function
to the breakpoint line. This saves the breakpoint
description against source file changes around
the function.

address_offset
For Assembler breakpoints, this parameter
describes the address offset from the
corresponding line or label address to the
breakpoint address.
Can be null (0x0) to describe an Assembler
breakpoint at a line address.

label Label name. quick_sort

address Pure hexadecimal address with 0x prefix. 0x200

Viewing Memory Locations

For viewing and modifying of the target's memory locations, the Memory window is
usable. It is available via menu Views – Memory or the corresponding tool bar button.

The leftmost column displays the address of the data, and the columns beside the
address column show the data in the selected format. You may specify the format using
the context menu as Byte for 8-bit data, Word for 16-bit data and DWord for 32-bit data.

124 of 193 Viewing Memory Locations User's Guide

Independent of the data width, an entry named Decimal in the context menu allows
toggling between hexadecimal and decimal display.

To change values, simply overwrite the selected location with the desired value. The
Memory window ignores the input if a key is pressed, which is out of range for the current
format (for example, if typing in the letter X in any but ASCII format range).

The size for editing addresses is limited to eight chars. Addresses in integer-based
modes must be entered in hexadecimal form without any extensions like 0x or h. This

differs from entering addresses in floating point modes.

Please note that you can also type in symbolic names of programs object into the
address field.

Writing data to target

There are two modes to write data to the target. The first one Auto Write writes the user-
modified data as soon as the user moves the cursor to a different location (address) while
in the second mode the user is responsible to write the data to the target using the
context menu entry Write explicitly. Data modified by the user, but not written into the
target system, is displayed in blue color.

Note that data marked in blue color might differ from the data in the target.

Toggling between these modes is done by the context menu entry Auto Write. After
writing the data to the target, the value will be verified. If the value read back from target
has the expected value, the color is changed from blue to black. If the writing failed, the
color is changed to red.

Updating data from target

The value displayed will be updated, if the user application switches from running to stop
and if the Memory window is scrolled. The memory takes a new snapshot of the target
memory and compares it to the old one. Modified data will be displayed in red color.

Data coloring for different states of the entries:

Register Value Color State of the Register Value

Red on White Value has been modified by the program during the last step

Blue on White Value was changed by the user, but not yet written into the
target

Black on White Value was not changed

White on Red Data Breakpoint enabled

Black on-pink Data Breakpoint disabled

White on Blue Data Range selected

Printing of memory locations

To print the content of the Memory window via the system printers, use menu File –
Print or the shortcut Ctrl+P. It is possible to print all pages, a set of pages or a selection.
All view modes are supported.

!

!

User's Guide Using the Simulated I/O channel 125 of 193

Using the Simulated I/O channel

The UDE® Universal Debug Engine features the I/O communication of the target
application via the debug channel. This means, that the application can use scanf(),
printf() and equivalent functions to input and output of text.

Requirement is the linking of the SIMIO.C software with your application software.

SIMIO.C is available for the TriCore, AURIX, PowerArchitecture, RISC-V, XC2000, C166

architecture and supports the compilers from Tasking, Keil and HighTec (GNU). The
Sieve example from the examples folder demonstrates the usage of the simulated I/O.

If your hardware preparations were successful and your target is connected, load the
program \SAMPLES\C16X\SIEVE\TASKING\SIEVE.OUT to your target. Open the Simulated
I/O Window from the menu Views – Other Windows – Simulated I/O or use the
corresponding button from the tool bar.

Start the program via menu Debug – Start Program Execution. The program output will
be redirected to the Simulated I/O window. In the last line, you are asked for the input of
the count of executions. The program is waiting in the scanf() function until the user

press RETURN.

Activate the Simulated I/O and type in i.e. 20 and press RETURN. The program will
continue and calculate the primes. In addition, an execution time measurement is done.

126 of 193 Viewing Data as Scientific Charts User's Guide

Viewing Data as Scientific Charts

The UDE® graphical window displays target program data as series of a scientific chart. It
is a powerful visualization tool, which helps to accelerate the evaluation of complex target
program data from process environment and the verification of complex software
algorithms. It can be used with all microcontroller families supported by UDE®.

Array Chart

The UDE® window displays pre-processed target system data as data series of a 2-
dimensional scientific diagram. This feature makes it easier to visualize and evaluate
target data to accelerate the verification of complex software algorithms and input from
process environment.

To use the graphical window, the array chart is available from the menu Views – Trace &
Analyze Windows – Array Chart or the corresponding tool bar button.

Using Expressions

The window uses flexible expression specifications, to describe, which parts from target
array data are displayed. Using the timedemo example, as array expression Buffer[$u]

can be used.

$u is a temporarily host variable defined in minimum 0 and maximum 9. These limits can
be taken from the source code or from the watch expressions.

User's Guide Viewing Data as Scientific Charts 127 of 193

Array Chart Properties

The context menu allows following modifications:

Zoom changes the cursor to cross cursor to select the Zoom range. Push the left mouse
button down at the diagram position, where the zoom rectangle has to start, hold the
button down and pull the zoom rectangle to the opposite endpoint. If the button is
released, the zoom operation occurs. The nested zoom state is saved and can be
recovered with Zoom out function or via the Reset function to return to un-zoomed
original state immediately. To release the zoom operation mode, re-open context menu
and activate the Select function. If a nested zoom-out operation is pending, the context
menu contains an additional Zoom out entry.

Zoom out restore last previously stored zoom state or the original window state, if all
nested zoom states are restored.

Enter the Pan mode and change the cursor into a typical move cursor. If the left mouse
button is held down, the whole diagram can be dragged from current view position into
another view position. The axis coordinates are changed according to the new position.
The Reset function restores the original window state. To release the pan operation
mode, re-open context menu and activate the Select function.

The Cursor mode opens a line cross over the whole diagram area and an additional
window, that displays the x- and y- values of all curves at the current line cross center. To
release the cursor operation mode, re-open context menu and activate the Select
function.

Time / Value Chart

UDE® supports real-time graphical-monitoring of target program variables to monitor and
analyze the values of variables and complex expressions while the application is running.
It can be used with all microcontroller families, which support real-time memory access
(currently available for AURIX, TriCore, Power Architecture, which support the IEEE-ISTO
NEXUS 5001 compliance classification classes 3/4, ARM Cortex, XC166, XC2000).

Open the window via menu Views – Trace & Analyze Windows – Time / Value Chart or
the corresponding tool bar button.

The variable browse dialog of New Signal Wizard or Expression Property Page allows
to select expression from new Expression Clipboard (see Adding Variables and
Expressions using Select Watches Dialog) as curve signals. New expressions created
by New Signal Wizard or Expression Property Page are always saved to the UDE®
global expression clipboard, if scientific time traced signal chart mode is active.

Using Expressions

In this example the Seconds variable from the timedemo code is observed.

mk:@MSITStore:D:/UDE_3_0/Ude/HtmlHelp/UDEGraphWin/UDEGraphWin.chm::/reference/Overview/NewSignalSheet/NewSignalWizardTargetExpressionPage.htm#Open_browse_dialog
mk:@MSITStore:D:/UDE_3_0/Ude/HtmlHelp/UDEGraphWin/UDEGraphWin.chm::/reference/Overview/PropertiesSheet/TargetExpressionPage.htm#Expression

128 of 193 Viewing Data as Scientific Charts User's Guide

A Tooltip popup window displays all summary information about the curve data or axis
data range of the appropriate cursor position.

Using Modes

The Time / Value Chart supports two display modes, which can be chosen over the
context menu Change Mode of graphical view.

Target variable time sample mode:

➢ Evaluation of expressions at regular time intervals. Display as line chart with x-Axis
for sample time and y-Axis for evaluated value.

Target variable time sample mode with variable time base:

➢ X-Y-Plot of two expressions at regular time intervals.

Typical real-time monitoring expressions can consist of:

➢ Simple basic program variables of integral types.

➢ Expressions, which describes member of complex variables of integral types.

➢ Expressions, which calculate results of integral type, based on any expression
consisting of multiple basic program variables or basic member of complex types.

Please note, the term “integral types” refers to signed / unsigned character, signed /

unsigned short, signed / unsigned long of single or double precision floating point

types.

Using complex expressions enables e.g. the collection, calculation and display of real
physical values from multiples program variables in real-time. This includes the dynamical
access to basic members of complex types, array members and special function register.

Setting up Real-time Monitoring Display Mode

The real-time monitoring mode has two preconditions:

➢ The target debug interface must be able to access the target memory locations
during running target, with a minimum of real-time violation by this target access.

➢ Due to the minimum sample period of 1 millisecond, the data collection and pre-
processing (expression calculation) must be executed by the firmware of the access-
device.

Enable the real-time monitoring display mode by using the context menu entry Change
Mode of graphical view ... Target variable time sample mode. The wizard dialog for
creating a new signal can be opened via context menu entry New Signal.

To modify properties of the charts e.g. color, line style etc., use the context menu entry
Properties. The property page Scientific Chart contains all settings covering global user
interface settings (colors), the settings for the displayed axis and the settings for each
configured signal. The expressions for the signals can be changed over the properties
dialog too.

mk:@MSITStore:D:/UDE_3_0/Ude/HtmlHelp/UDEGraphWin/UDEGraphWin.chm::/reference/Overview/MainWindow/open_graph_window.htm#Tooltip_Windows_provide_Summary_Information_about_available_Data
mk:@MSITStore:D:/UDE_3_0/Ude/HtmlHelp/UDEGraphWin/UDEGraphWin.chm::/reference/Overview/MainWindow/open_graph_window.htm#Tooltip_Windows_provide_Summary_Information_about_available_Data

User's Guide Viewing Data as Scientific Charts 129 of 193

If Cursor Mode is active, the Snap to cursor to nearest curve flag enables to snap
current cursor location to the nearest valid curve coordinates. If Double buffering is on,
the curve data are stored double buffered. Double buffering avoids flicker effects during
re-paint operations.

The trace results of the Data Sequences can be stored in an XML based data set
collection. A new data set will be generated after each measurement period (depends
from selected display mode). The Result storage object path of this XML file can be
selected. The measurement period starts with the first program code run after program
download. It will be closed by termination of debug session or program reload or new
program download.

A new data set, which was generated after each measurement period, can be added to
an existing data set collection or it can discard earlier generated data set via Append
data set to existing data storage.

Setting up Memory Locations Display Mode

Enable the memory locations display mode by using the context menu entry Change
Mode of graphical view ... Target variable time sample mode with variable time
base. The expressions are specified via context menu: First select New X-axis
translation Signal and then New Signal to open a wizard dialog for creating the
expression. If multiple signals are specified, they will use the same X-axis.

To modify properties of the charts e.g. color, line style etc., use the context menu entry
Properties. The property page Scientific Chart contains all settings covering global user
interface settings (colors), the settings for the displayed axis and the settings for each
configured signal. The expressions for the x-axis and signals can be changed over the
properties dialog too.

130 of 193 Viewing Call Stack User's Guide

Viewing Call Stack

The Call Stack window displays the calling hierarchy of the program. The top entry shows
the actually IP location and the name of the currently executed function, if available. The
entries below list the return addresses in the sequence of their occurrence.

The stack window supports an easy navigation through the current program hierarchy:
double-click on a stack entry, and the corresponding location is shown in the program
window.

Once a line is selected, the default context in UDE® is changed to this location and all
information in watches, locals and in the Core Registers window will be updated to the
selected context.

The example at the right shows the current IP location is 0xC0000436 in the

TimerCallback() function. This function was called by an interrupt occurring while

executing the DemoFunction3() function. The interrupt handler will return to the address

0xC0000548 in the

DemoFunction3() function.

The entry between the
systime_Isr() and

DemoFunction3() is the

interrupt vector code.

The entry at the bottom
shows the return point in the
start-up code. Because the
interrupt vector and the start-up code are not part of the high-level-language of the
program, no function names are displayed.

Call Graph Analysis
The Call Graph Analysis (CGA) is a trace analysis to create a representation of the
control flow on software level from the control flow content in trace messages and
accumulates method call count and runtime information. The call graph represents the
Caller - Callee relation of subroutines and functions (later generally referred to as
subroutines) of a software module.

The analysis uses symbolic information provided to UDE® by the loaded ELF and the
instruction addresses contained in the trace messages to reconstruct subroutine enter
and leave events. These events are used to reconstruct a call graph and collecting the
number of calls of a subroutine. If timing information are available (that is the tick value of
the trace messages), the difference between method enter and leave is calculated and
used to provide statistic information, like minimum, maximum and average call time
inclusive and exclusive subroutine calls.

Enabling the Call Graph Analysis

The UDE® Call Graph Analysis is an Add-In of UDE® and must be activated before it can
be used. To activate it, open the Add-In Manager, menu Config – Add-in Components.
Enable the entry Call Graph Analysis and open menu Views – Trace & Analyze
Windows – Call Graph.

Configuring of Trace Configuration

This example uses a TC1766ED with MCDS support and as program the Timedemo.elf

from the example directory.

Open the UEC trace configuration window via menu Tools – Configure Trace… to
create a suitable trace configuration to record program control flow for Core 0 of the
TC1766ED.

!

User's Guide Call Graph Analysis 131 of 193

Execute the following steps to create the required configuration:

➢ Switch to UEC configuration window.

➢ Leave the Compact library.

➢ Drag the Init TriCore library element to configuration area.

➢ Drag the Program Trace (Start/Stop) library element to configuration area.

➢ Set Start trace @ to e.g. main

➢ Set Stop trace @ to e.g. endof main

The optimized MCDS trace configuration for this use-case is now completed.

Using the Call Graph Analysis

Now start the trace recording via menu Tools – Start trace … and start the program via
menu Debug – Start Program execution. When the trace recording has stopped
(because of a manual stop or because the trace memory is full), you can start the Call
Graph Analysis via context menu Start.

The CGA creates per default 2 kind of graphs: The static call graph and the dynamic call
graph:

➢ The dynamic call graph describes the Caller – Callee relationship with respect
only to the immediate parent of a node (local). This means, if the same
subroutine is called from two different parents or at different levels of the caller
hierarchy, the subroutine will be treated as separate instances. Statistic value will
be accumulated for each instance separately.

➢ The static call graph describes the Caller – Callee relationship with respect to all
parents of a node (global). This means each subroutine will be treated as unique
instance in the complete graph. Statistic value will be accumulated from all calls
to the subroutine, regardless of the immediate caller or call level.

This difference results in two sets of graph representation and accumulated statistic
value.

132 of 193 Call Graph Analysis User's Guide

Dynamic Call Graph

The label of the call graph nodes includes additional information for the number of times a
subroutine was called by the immediate parent node (the value in squared braces, the
Edge Call value) and how often the node was called totally (the value in round braces,
the Node Call value).

In a dynamic call graph, both values are always the same, since each subroutine call
from a different parent is treated as different instance, for which calls are accumulated
independently.

Static Call Graph

The label of the call graph nodes includes additional information about the number of
times a subroutine was called by the immediate parent node (the value in squared
braces, the Edge Call value) and how often the node was called totally (the value in
round braces, the Node Call value).

In a static call graph, both values can differ, if the same subroutine was called from
different parents or at different call levels.

User's Guide Call Graph Analysis 133 of 193

Dynamic Node Call and Timing Value

The table in Dynamic Node Calls and Timing describes the statistical node call and timing
value related to Dynamic Call Graph example. It is a listing of all nodes of the dynamic
call graph. Since each call from a different subroutine is treated as different instance of
the subroutine, the function name of subroutines called from different parents appear
multiple times. This is also true for recursive calls, since the parent subroutine in the
upper call graph is treated as separate instance.

The Calls column shows the accumulated number of calls of the subroutine from a parent
subroutine. The Return column shows, how many times the subroutine returned to a
parent. Please note, that only calls and returns recorded in trace are counted in these
columns. If the trace starts in a subroutine, the start of trace is not recorded as call, since
there is no explicit call from a parent subroutine recorded in trace. Likewise, for the return
from trace. In the example above, the trace started and ended in subroutine
CGARecursive. Since no call to CGARecursive and no return from CGARecursive to a
parent subroutine were recorded, the Calls and Returns columns are zero, even though
trace inside the subroutine was recorded.

Other columns are displaying the statistical timing value for the inclusive or exclusive
subroutine calls: total time (Time tot incl/excl), minimal execution time of a single call
(Time min incl/excl), the average execution time of a single call (Time avg incl/excl) and
the maximal execution time of a single call (Time max incl/excl).

Static Node Call and Timing Value

The table in Static Node Calls and Timing Example is the description of the node call and
timing value, and related to Static Call Graph Example. It is a listing of all nodes of the
static call graph. Since the recursive call to subroutine Level is recorded for a unique
instance, only one node is displayed here, which accumulates the calls, returns and
timing value. The columns of the table are the same as in the dynamic call graph table,
but the value will differ because of their different accumulation method.

134 of 193 Program Execution Time Measuring User's Guide

Program Execution Time Measuring
Program execution time measuring is supported by UDE® via

➢ Trace unit on target. Please refer to the chapter about Trace, Visualization and
Analyzing.

➢ Timer unit on target.

To use time measuring via target timers the feature has to be enabled in the target
interface when using some target architectures. Connect to the target and open the menu
Config – Target Interface… setup. Open the page Monitor respectively the page
Debug and enable the Program execution time measuring. Select the used timers for
Time Measurement if available.

Open the tool bar Tools, double-click to the field labeled with Function disabled per
default. A property dialog will be opened. Enable the time measuring in this dialog.

Select the adequate working mode:

➢ Continuous mode - the timer accumulates the lapsed time

➢ Single step mode - the timer shows the lapsed time of the last single step of UDE®.

Trace, Visualization and Analyzing

Hard real-time debugging requires close interaction with the processor. Tracing shall
provide a chronological picture of a system's inner workings up to, starting from or near
an event, mainly to guide a human in understanding a faulty program.

System Level Debugging

Profiling
Code

Coverage
Trace

Timeline
Variable
access

Measurement
Amount of

execution time
for each function

Execution
of code

Call hierarchy
and execution
time sequence

Memory
changes

Requirements

Code trace with
tick information

(Subroutine
only possible)

Code trace
without

tick information

Code trace with
tick information

Data trace with
tick

information

Results
Graphical chart

and reports
Graphical chart

and reports
Graphical

chart
Graphical

chart

Different semiconductor vendors have defined trace interfaces like MCDS, NEXUS,
CoreSight, ETM and ETB for this purpose. These trace ports are available on the
AURIX, TriCore ED, Power Architecture, XC2000ED and ARM derivatives. The UAD2next
with Trace add-on and UAD3+ with parallel Trace Pod supports NEXUS and ETM parallel
trace.

MCDS and ETB are embedded trace ports including the trace buffer on-chip, which
reduces the requirements of an external trace analyzer to a minimum. AURIX ED
processors support MCDS trace, several Automotive Power Architecture processors
support NEXUS trace and several ARM processors support ARM HSSTP over high-
speed serial Aurora trace interface. UAD3+ supports these high-speed serial trace
interfaces by special Trace Pods.

Triggered Transfer is a feature of AURIX, TriCore and XC2000/XE166 microcontrollers
for high performance polling of target memory. Memory Transfer means the transfer of
data via debug channel.

Cortex can provide trace event messages via the Serial Wire Output SWO or
Instrumentation Trace Messages ITM.

User's Guide Trace, Visualization and Analyzing 135 of 193

MCDS support for TriCore ED, AURIX ED microcontrollers requires an additional UEC
license (UDE-TC UEC).
The AURIX TC29, TC37, TC38 microcontrollers are equipped with miniMCDS, which
offers limited functionality for trace-based debugging even for production devices.
miniMCDS can be used for simple trace-based debugging with the standard version of
UDE®. An additional trace license (UDE-TC UEC) is only required for using advanced
features of miniMCDS together with the graphical trace configurator UEC.

Trace Sources

MCDS
MCDS Aurora

Trace
NEXUS

NEXUS Aurora
Trace

Processor
support

EmulationDevice
TriCore ED,
XC2000 ED,
AURIX ED

EmulationDevice
AURIX ED,

Automotive
Power

Architecture

Automotive
Power

Architecture

Output format
Event

Messages
Event

Messages
Event

Messages
Event

Messages

Time
accuracy1

Message
Tick

Message
Tick

Message
Tick

Message
Tick

Trace memory
On-Chip Memory:
up to 2048 kByte

UAD2next -

 512 MByte,

UAD3+ - 4 GByte

UAD2next -

 512 MByte,

UAD3+ - 4 GByte

UAD2next -

 512 MByte,

UAD3+ - 4 GByte

Trace covering
Instruction Trace

Data Trace
Instruction Trace

Data Trace
Instruction Trace

Data Trace
Instruction Trace

Data Trace

Advantages
Continuous trace,

complex trace
filter

Continuous trace,
complex trace

filter
Continuous trace Continuous trace

Disadvantages
Limited by size of

Trace Board
buffer

Limited by size of
Trace Board

buffer

Limited by size of
Trace Board

buffer

Limited by size of
Trace Board

buffer

Trace Sources (cont’d)

CoreSight ETM
Triggered
Transfer

Memory
Transfer

ETB

Processor
support

ARM, Cortex
TriCore, XC166,
XC2000, XE166

All except ARM ARM, Cortex

Output format
Event

Messages
Data

Snapshots
Signal and IP

Snapshots
Pipeline
States

Time
accuracy1

Message
Tick

Endless Trace
≥ 100ms

Endless Trace
≥ 1ms

Processor
Tick

Trace memory
UAD2next -

 512 MByte,

UAD3+ - 4 GByte

Buffered in
UAD2, UAD3

Buffered in
UAD2, UAD3

On-Chip Memory:
up to 6 kByte

Trace covering
Instruction Trace

Data Trace
Data Trace

IP and Data
Trace

Instruction Trace
Data Trace

Advantages Continuous trace
Endless trace

possible
Endless trace

possible
Continuous trace

Disadvantages
Limited by size of

Trace Board
buffer

Non-continuous
trace

Non-continuous
trace

Limited by size of
Trace Board

buffer

!

136 of 193 Trace, Visualization and Analyzing User's Guide

Trace Sources (cont’d)

ITM / SWO
ARM HSSTP
Aurora Trace

Processor
support

Cortex
Automotive
ARM/Cortex

Output format
Event

Messages
Event

Messages

Time
accuracy1

Endless
Trace

Message
Tick

Trace memory
Buffered in

UAD2, UAD3

UAD2next -

 512 MByte,

UAD3+ - 4 GByte

Trace covering Data Trace
Instruction Trace

Data Trace

Advantages
Endless trace

possible
Continuous trace

Disadvantages
Non-continuous

trace

Limited by size of
Trace Board

buffer

1) Depends on target system

Trace Analyzing Features and Windows

Analyzing of traced data is one of the features supported by UDE®. The analyzing
functions support different use-cases. Different types of windows support the visualization
of the results of these use-cases. The table below shows an overview of the supported
trace visualization and analyzing use-cases.

Trace Visualization and Analyzing

Profiling
(stats)

Profiling
(trace)

Code
Coverage

(trace)
Program Flow

View format

Bar chart
in

Profiling
Window

Bar chart
in

Profiling
Window

Tree chart
in

Code Coverage
Window

Gantt chart
in

Execution
Sequences

Trace source
Memory Transfer
Periodical debug
read by UAD2/3

MCDS
NEXUS, ETM,

ETB, CoreSight

MCDS
NEXUS, ETM,

ETB, CoreSight

MCDS
NEXUS, ETM,

ETB, CoreSight

Method of
Visualization

Displays hits of
sampled IP
addresses
assigned to

function ranges

Displays
recorded IP

addresses hits
assigned to

function ranges

Displays code
coverage results
of all executed

functions in
multiple levels

Displays traced
code addresses
hits assigned to
function ranges
or hexadecimal
addresses over

time axis

Advantages

Endless trace,
good

approximation
about most

runtime-
consuming

program parts

Exact profiling
results over the
recorded time

range of IP
addresses in
trace buffer

Flow of recorded
IP addresses,
detection of
incomplete

execution of code

Graphical display
of program trace
records to get a

better global
overview about
program flow

User's Guide Trace, Visualization and Analyzing 137 of 193

Trace Visualization and Analyzing (cont’d)

 Data Trace Trace View Signal Trace Signal Log

View format
Line chart

in
Data Trace Chart

Message Log
in

Trace window

Line Chart
in

Time / Value
Chart

Message Log
in

Data Sequences

Trace source
MCDS

NEXUS, ETM,
ETB, CoreSight

MCDS
NEXUS, ETM,

ETB, CoreSight,
ITM

Memory Transfer
Periodical debug
read by UAD FW

ITM,
Trigger Transfer

Method of
Visualization

Displays recorded
read- and/or write

access of
variables over

time axis

Displays all
recorded

information
contained in raw

trace data

Displays values
of a variable or
expression over

time axis

Displays all
recorded

information
contained in raw

trace data

Advantages

Graphical display
of variable trace
records to get a

better global
overview about
time of variable

access

Raw trace, flow of
recorded IP data

related to
appropriate
source code

Endless trace, full
scaling of time

and value interval

Raw trace, flow of
recorded data

Trace Views

MCDS, miniMCDS trace, NEXUS trace (some types) and ETB trace can be used without
any additional hardware add-on.

Dedicated AURIX, Power Architecture and ARM/Cortex emulation devices support high-
speed serial trace output via Aurora protocol. Therefore, a UAD2next or UAD3+ with Aurora
Serial Trace Pod is required.

Using the NEXUS parallel trace, CoreSight, ETM trace features with UDE® is only
possible with UAD2next or UAD3+ with Parallel Trace Pod.

Usage of external trace requires an additional target specific interface cable. The
complete overview over all target specific interface solutions is available within the actual
PLS’ product information or on our website https://www.pls-mc.com or ask PLS support
(support@pls-mc.com) for further details.

Configuring the Trace Window

The actual UDE® configuration must be configured to support one of the hardware
specific UDE® trace channels. If this feature is configured, a tool bar and a menu item to
open the Trace window are available. Then, open the Trace window by menu Views –
Trace & Analyze Windows – Trace. Following user interface elements are additional
available, if trace feature is available:

➢ Trace functions in Tools tool bar

➢ Save trace steam

➢ Load trace stream

➢ Start trace

➢ Stop trace

➢ Clear trace data

➢ Configure trace

➢ Trace use case

➢ Same functions are available within Tools menu

https://www.pls-mc.com/
mailto:support@pls-mc.com

138 of 193 Trace, Visualization and Analyzing User's Guide

➢ The local menu of the Trace window provides also the most functions of these
bars.

➢ Start / Stop Trace activate/deactivate the
trace manually. Before the trace can be
started, the trace must be configured correctly.

➢ Clear deletes trace data so the window is
completely empty after execution of this
command.

➢ Decode All Pages

➢ Show Trace from helps you to navigate to the
top, the bottom and the trigger position. For a
finer resolution, use the Find options.

➢ With Find ... you can search stepwise for a
term in the specified column of trace buffer or
all occurrences in the trace stream at once.

➢ The Hide / Show Empty Rows menu-point
toggles the display mode of the window. The
trace buffer contains often many empty
samples (Pipeline holes). For the choice of a
compact view of the program trace, hide the
empty rows. For an isochronous view, choose
the empty rows for showing.

➢ Use the Save As ... to save the displayed samples to a format file.
Multiple formats are possible; most commonly used are the columns
tabulator separated (*.tab) or space characters separated (*.txt)

format.

➢ Copy Column Entry

➢ Auto Scroll

➢ Trace Config … opens the trace channel specific trace configuration
window or dialog.

➢ Configure the Trace window properties via the Window Properties ...
menu entry:

User's Guide Trace, Visualization and Analyzing 139 of 193

➢ The local menu of the appropriate trace stream node in the Target Manager
window also provides a local menu with all global control functions of the trace
stream.

Configuring of Trace Configuration

The Trace window can display different kinds of trace messages and is an ideal tool to
identify complex problems, e.g. to find multi-core software run-conditions. This example
uses a TC27xxED with MCDS support and the program TimeDemo.elf from the example

directory.

Open the UEC trace configuration window via menu Tools – Configure Trace to create a
trace configuration to record the multi-core start sequence between core 0 and core 1 of
TC27xx. Execute the following steps to create the required configuration:

➢ Switch to UEC configuration window.

➢ Switch from Compact to Advanced Configuration library.

➢ Drag the Init TriCore library element (1.0) to configuration area.

➢ Change Memory Size to maximum value of 1024 kByte

➢ Change Syncmode to mode Sync to set the best tick resolution between traced code
samples

➢ Change Core Y to core 1.

➢ Drag the Signal program address library element (2.1) to configuration area.

➢ Set Signal name to e.g. my_signal

➢ Select LEDCTL_Init function start address as comparison address for Core X PC

➢ Drag the Actions on condition library element (5.1) to configuration area.

➢ Browse my_signal as signal name for If condition.

➢ Select as action Trigger trace

➢ Drag the Emit actions library element (5.3) to configuration area.

➢ Add emit action store Core X PC

➢ Add emit action store Core Y PC

➢ Add emit action ticks on

The MCDS trace configuration for this special task is now completed.

140 of 193 Trace, Visualization and Analyzing User's Guide

Now you can start the trace recording (tool bar icon or menu Tools – Start trace... or
Trace window local menu start trace function). After start of program execution, the
Progress window completes the task:

➢ Record trace stream to memory

User's Guide Trace, Visualization and Analyzing 141 of 193

Analyzing Results

After completion of this task, the Trace window displays the first page of the decoded
trace stream.

Identify Core related Messages

The core related trace messages are colored in the core specific framework windows tabs
colors. These colors can be assigned by UDE® configuration dialog (menu Config –
Debug Server Configuration – Windows Tabs Color).

Trace Buffer Find Dialog

Find what defines the string to find in a
column. The search string can be made
case sensitive by setting the check mark.
The find operation returns any row in the
selected column that contains a substring,
(or the whole word, if checked) which
matches the input search pattern. The
dialog saves user input values in a history for later re-use for additional searches. The
history is accessible with the drop-down box.

Select the Column from the drop-down box, which has to contain the search string. This
value is preselected corresponding to the right-click position automatically.

The Up and Down specifies the direction to search for. The search starts at the selected
row. Find Next starts the search. The dialog remains open without successful search
operation. Otherwise, the dialog is automatically closed and the window scrolls to the
found row in the view area and highlights it.

Switch to Source Code

After selection of a row, which contains code trace messages, a double click on this row
forces the program window to open the source code of the selected code address and
shows the related code position in the current mode of this program window (assembly or
high-level language source code).

142 of 193 Trace, Visualization and Analyzing User's Guide

Profiling (stats)

The IP Profiling window displays profiling results of IP samples inside of functions of a
running program. The input data will be recorded by periodical reads of the IP over debug
channels by the UAD firmware.

Configuring the Profiling (stats) Window

A distribution statistic over polling results will be displayed as bar chart over all functions
or sections (if no symbolic information about functions is found for the appropriate
address), which are hit by periodical polling of the value of the IP. This method requires
an architecture, which provides the capability to read the IP value periodically during
program execution (e.g. Infineon AURIX, TriCore and XC2000/XE166 microcontrollers).
Using the UAD2, a sampling period in the range of 1 millisecond (1 ms) is assured for
snapshots of the actual content of the IP in a selectable period during running target
program.

Open the Trace window by menu Views – Profiling (stats).

The chart displays the actual statistics of IP sampling results. The profiling method of
periodical polling of the IP generates two kinds of results for each function or section
range:

➢ Number of hits per function or section range and

➢ the approximated execution time of the function.

The execution time will be calculated from hits per function multiplied with the period
between two samples. The Profiling Setup page enables setup of different parameters
like the refresh period.

The profiling result table lists all details of IP profiling data set.

User's Guide Trace, Visualization and Analyzing 143 of 193

Profiling (trace)

The Trace Profiling window displays profiling results of IP samples inside of functions of
a running program, which are recorded by code trace from MCDS, NEXUS, CoreSight or
ETM trace channel. The full program trace enables measurement results of function
execution time, which are much more exact than results from IP polling.

Use of Trace Profiling Window

The results of trace profiling will be displayed by the trace profiling window, using two bar
charts (one for execution time of a function from overall execution time and one for the
absolute execution time of a function) and a table, which provides all details of the
profiling calculation. Open the trace profiling window by menu Views – Trace & Analyze
Windows – Profiling (trace). The window content will be updated, if the corresponding
hardware trace stream was recorded and has decoded new trace data.

Configuring of full Program Trace

The measurement requires a suitable trace stream configuration, which depends on the
kind of the trace channel. The trace configuration must ensure that the recorded trace
contains program flow trace of the core, which is assigned to the Trace Profiling window.

This example uses a TC27xxED with MCDS support and the TimeDemo.elf program from
the example directory.

Open the UEC trace configuration window via menu Tools – Configure Trace to create a
suitable trace configuration to record a program trace data with ticks of core 0 of TC27xx.
Execute the following steps to create the required configuration:

➢ Switch to UEC configuration window.

➢ Switch from Compact to Advanced Configuration library.

➢ Drag the Init TriCore library element (1.0) to configuration area.

➢ Change Memory Size to maximum value of 1024 kByte.

➢ Change Syncmode to mode Sync to set the best tick resolution between traced code
samples.

➢ Drag the Signal program address library element (2.1) to configuration area.

➢ Set Signal name to e.g. my_signal

➢ Select main function start address as comparison address for Core X PC

➢ Drag the Actions on condition library element (5.1) to configuration area.

144 of 193 Trace, Visualization and Analyzing User's Guide

➢ Browse my_signal as signal name for If condition.

➢ Select as action Trigger trace

➢ Drag the Emit actions library element (5.3) to configuration area.

➢ Add emit action store Core X PC

➢ Add emit action ticks on

The optimized MCDS trace configuration for this use case is now completed.

It is recommended to enable automatic refresh of profiling data after end of trace (if 1
MByte on-chip trace memory is filled). Use the Profiling Setup page, group Basic
Profiling Settings, and enable the check box Enable automatic refresh of trace data.

After configuring the trace, start trace recording (tool bar icon or menu Tools – Start
trace.. tool bar). After start of program execution, the Progress window displays two
subsequent tasks:

➢ Record trace stream to memory

➢ Decode trace data

After completion of the last task, the page Profiling Views of the Code Trace Profiling
window will be updated with the results from the last trace recording. This method
generates more detailed results than the measurement by IP polling. The results contain
additional information:

➢ Number of recorded functions calls.

➢ The average function execution time.

The quality of measurement depends on the amount of recorded program addresses
without tick information and therefore on the type of trace channel. The result table
contains a summary (percent value) of Approximate time stamps, which allows an
evaluation of the results precision. For all recorded trace samples without tick information,
the appropriate ticks must be approximated based on the last and next known tick values.

User's Guide Trace, Visualization and Analyzing 145 of 193

To illustrate this, the following figure shows a Trace window with recorded program trace,
which contains some code address samples without tick information.

Configuring of MCDS Compact Function Trace

The MCDS trace of Infineon TriCore, AURIX supports an additional code trace mode,
which is named Compact Function Trace. This mode records only the call and return
instructions. Therefore, this mode provides important advantages over normal program
full trace:

➢ It reduces the consumption of trace memory in comparison to full program trace,
therefore the available memory can store trace data for a longer period (typically ten
time longer and more).

➢ Each recorded function call and return instruction has an assigned own tick value,
therefore the precision of the measured function execution times will be increased.

Various compilers perform a sibling/tail call optimization that prevents the Compact
Function Trace from recognizing call and return instructions. The Compact Function
Trace does not work under these conditions.

The following two figures show the complete UEC configuration for a profiling task using
compact function trace.

!

146 of 193 Trace, Visualization and Analyzing User's Guide

The profiling data analysis detects the compact function trace mode automatically from
trace configuration. Due to the enhanced accuracy and the longer time of trace recording,
the result of the compact function trace profiling analysis provides two additional
important results:

➢ Minimum function execution time

➢ Maximum function execution time

User's Guide Trace, Visualization and Analyzing 147 of 193

Code Coverage

UDE® supports the calculation of code coverage by analyzing recorded program trace
data of MCDS, NEXUS, CoreSight and ETM trace channels:

➢ Statement Coverage of Machine Code – This method calculates code coverage
data for statement coverage based on information of executed machine instructions.
The results of statement coverage are available in the Program window too.

➢ Branch Coverage of Machine Code – This method calculates code coverage data
for branch coverage based on information of executed machine branch instructions.

➢ Branch Coverage of Control Flow – This method additionally uses program flow
information from compiler symbol information to determine the successors of indirect
branches, which are not available for trace-only based branch coverage. This mode
requires the availability of the additional compiler option to generate the debug
information about the program control flow. This mode generates coverage results,
which are comparable to the coverage results generated by common known GNU
compiler gcov-option.

The Code Coverage window displays all results of statement and branch coverage. The
calculation requires additional information about the program flow from compiler provided
symbol information.

Preparing the Trace Configuration

The code coverage measurement requires a suitable trace stream configuration, which
depends on the kind of the trace channel. The trace configuration must ensure that the
recorded trace contains program flow trace of the core, which is assigned to the Code
Coverage window.

This example uses a TC27xxED with MCDS support and the TimeDemo.elf program from

the example directory.

Open the UEC trace configuration window via menu Tools – Configure Trace to create a
suitable trace configuration to record program trace data of core 0 of TC27xx. The code
coverage algorithm uses these trace data to calculate code coverage results. The
optimized code coverage configuration need not contain additional time information
(compared with profiling configuration), which saves trace memory space. Execute the
following steps to create the required configuration:

➢ Switch to UEC configuration window.

➢ Switch from Compact to Advanced Configuration library.

➢ Drag the Init TriCore library element (1.0) to configuration area.

➢ Change Memory Size to maximum value of 1024 kByte

➢ Drag the Signal program address library element (2.1) to configuration area.

➢ Set Signal name to e.g. my_signal

➢ Select main function start address as comparison address for Core X PC

➢ Drag the Actions on condition library element (5.1) to configuration area.

➢ Browse my_signal as signal name for If condition.

➢ Select as action Trigger trace

➢ Drag the Emit actions library element (5.3) to configuration area.

➢ Add emit action store Core X PC

The optimized MCDS trace configuration for this use-case is now completed.

148 of 193 Trace, Visualization and Analyzing User's Guide

Use of Code Coverage Window to evaluate the Coverage Results

The trace coverage window displays all results of trace coverage in detail. Open the trace
coverage window by menu Views – Trace & Analyze Windows – Code Coverage
(trace).

To update the window content after recording the trace data, use the context menu entry
“Start” for running the analysis. If the entry is grayed out, the analysis will start
immediately, after the trace stream stopped recording. The window displays the
accumulated coverage data from all functions covered by the trace data.

The window can be opened individually for each core and, by disabling the context menu
entry “Show all Cores”, provide coverage data for only that core.

User's Guide Trace, Visualization and Analyzing 149 of 193

The Code Coverage window supports the creation of HTML reports, which contain all details
of code coverage measurement of one or more functions. These reports are intended for
documentation of the complete process of software qualification. These reports can be
generated manually via context menu entry “Create Report” or automatically after completion
of coverage analysis. The latter requires configuration of the output name and path for the
report files in the code coverage setup page. See the online help of the code coverage
windows for details.

Use of Program Windows to evaluate the Statement Coverage
Results

The Program window provides basic information about statement coverage:

➢

The background color of the left column of the Program window is used to visualize,
whether the appropriate source line or instruction was covered by the latest code
coverage measurement.

150 of 193 Trace, Visualization and Analyzing User's Guide

If source mode is active,

➢ the green background color indicates, that all machine instructions of the source line
have been covered,

➢ the yellow background color indicates, that only a subset of the machine instructions
of the source line have been covered,

➢ the default background color indicates that none of the machine instructions of the
source line have been covered.

If mixed- or disassembly mode is active,

➢ the green background color indicates, that the machine instruction was executed,

➢ the default background color indicates that the machine instruction was not executed.

Execution Sequence Chart

The Execution Sequence Analysis analyses the program-flow on the task- and function-
level based on trace data. The results are visualized, using the Execution Sequence
Chart. This feature makes it easier to visualize and evaluate target data to accelerate the
verification of complex software algorithms and input from process environment. The
Execution Sequence Analysis view can be used with all targets, which provide a
hardware trace channel for MCDS, NEXUS, CoreSight, ETM or ETB trace.

Features of the Execution Sequence Chart

The Execution Sequence Chart (formerly Function Sequence Chart) displays the
execution of the program on the task- and function-level based on trace data. The
execution sequence is displayed separately for each core, but using a common timeline
to observe the parallel execution.

Note, that task information is only available if a separately available UDE® add-in
component provides it. The add-in components “µC/OS-II Awareness”, “OSEK
Awareness”, “PXROS-HR Awareness” and “SAFERTOS/FreeRTOS Awareness” provide
these Information. The “OSEK Awareness" add-in uses information from an ORTI (OSEK
Real-Time Interface) file to identify the running task. See the manual for this add-in for
further information.

The execution sequence is displayed as a Gantt chart. The tree view on the left side can
be used to show or hide the execution on specific cores and tasks. The bars on the right
side show which function is executed at which time. During the execution of sub-
functions, the bar of the parent function has a gap. Vertical dashed grey lines show
events within the trace stream. The tool-tip (mouse over) of such a line will provide a
short description. See section Event Marker for a more detailed explanation.

User's Guide Trace, Visualization and Analyzing 151 of 193

Configuring of Trace Configuration

To use the Execution Sequence Chart, a trace configuration with the following properties
is required:

➢ Program Trace for (at least) each executed call and return instruction and

➢ Ticks enabled, to calculate the relative time for the execution.

Therefore, the same trace configurations, which were described in chapter Trace
Profiling, Configuring of full Program Trace and chapter Trace Profiling, Configuring
of MCDS Compact Function Trace, can be used.

Use of Execution Sequence Chart

Open the chart by menu Views – Execution Sequence Chart. Before any data can be
displayed, the Execution Sequence Analysis must be started. Depending on the size and
complexity of the trace stream, the analysis may take a lot of time. Thus, the analysis
must be started manually, even if a new trace stream has been captured. To start the
analysis, record a trace first or load a persistent trace stream. Then right-click within the
empty area of the chart, to open the context menu, and choose Start analysis.

The analysis is started as a background task (see Progress Window). After it is
completed, the chart is updated automatically.

The tree can be filtered on a per-item basis. First, select the item that (direct) sub-items
you want to filter. Then input the filter string into the text-box on the upper-left corner.

Event Marker

The following events may be displayed within the Gantt chart using vertical dashed grey
lines.

➢ Trace Broken - The trace could not be fully decoded due to special circumstances.
For example, if the on-chip trace hardware of the target has omitted some required
information due to its limitations (buffer overflows, etc.). See messages in Trace
Window at respective time and earlier.

The blue and green marker can be set similar to bookmarks and allow time
measurement in between.

Data Trace Chart

This UDE® window displays all data-access trace records of a core as data series of a 2-
dimensional scientific diagram. This feature makes it easier to detect time-related variable
access problems and to accelerate the verification of complex software algorithms and
input from process environment. The Scientific Chart view can be used with all targets,

152 of 193 Trace, Visualization and Analyzing User's Guide

which provide a hardware trace channel for MCDS, NEXUS, CoreSight, ETM or ETB
trace and data-access trace.

Features of the Data Trace Chart

A Find function is available as enhancement of the search- and zoom-function to find
specific trace samples and zoom into specific sample ranges. For that, the chart has to
switch into Zoom mode via context menu.

The pre-processing algorithm, which analyses the data-access trace records of the last
recorded stream, automatically detects the high-level variables, which are modified or
read by the core. Therefore, the trace has only to be configured for filtering of the relevant
data accesses.

Configuring of Trace Configuration

This example uses a TC27xxED with MCDS support and the TimeDemo.elf program from

the example directory.

Open the UEC trace configuration window via menu Tools – Configure Trace to create a
suitable trace configuration to record write-access trace from Core0 to the global variable
g_Time with timestamps. The data trace chart pre-processing algorithm assigns the

address-based data-write trace message to the original variable names automatically.
Execute the following steps to create the required configuration:

1. Switch to UEC configuration window, switch from Compact to Advanced
Configuration library.

2. Drag the Init TriCore library element (1.0) to configuration area.

3. Change Syncmode to mode Sync to set the best tick resolution between traced data
samples

4. Drag the Signal program address library element (2.2) to configuration area.

5. Set Signal name to e.g. START

6. Select main function as start address for Core X PC

7. Drag the Actions on condition library element (5.1) to configuration area.

8. Browse START as signal name for If condition.

9. Select as action Trigger trace.

10. Drag the Signal data address library element (2.3) to configuration area

11. Assign TIME as signal name of this signal.

12. Select the variable g_time from watch browse dialog as signal address.

13. Drag the Actions on condition library element (5.1) to configuration area.

14. Browse TIME as signal name for If condition.

15. Select as action store Core X WB addr, add further action store Core X WB data.

16. Add further action ticks on.

The optimized MCDS trace configuration for this use-case is now completed. It is
recommended to enable the automatic refresh of trace data after the end of data trace (if
1Mbyte on-chip trace memory is filled) by Code Trace Use – Cases Property Page of
UDE® configuration dialog (menu Config – Debug Server Configuration”), setting the
check mark in Enable automatic refresh of trace data.

User's Guide Trace, Visualization and Analyzing 153 of 193

Usage of Data Trace Charts

Open the Data Trace Chart by menu Views – Trace & Analyze Windows – Data Trace
Chart.

Now you can start trace (tool bar icon or menu Tools – Start trace..). After start of
program execution, the Progress window displays two subsequent tasks:

➢ Record trace stream to memory

➢ Decode trace data

154 of 193 Trace, Visualization and Analyzing User's Guide

After completion of the last task, the Data Trace Chart window will be updated with the
results from last run of variable access trace.

Find All in Trace

The Find All feature is used to search a trace stream for trace messages with a specified
property or combination of properties. The result is displayed in the Trace Window as
marker at the left side of the window and in a separate Marker window. The Find All
dialog can be opened from the Trace windows context menu, by selecting the Find All ...
menu entry. The Marker window is opened via menu Views – Trace & Analyze
Windows – Markers.

The Find All dialog allows selection of several predefined configurations and parameters
used for the search:

➢ Single Instruction execution at specified addresses.

➢ Data accesses (read/write) at specified addresses and/or with given values.

➢ Code execution in specified functions.

➢ Code sequences between a given start and end address.

In the example above, an address range in code memory is selected. The Markers
window shows the search results of all recorded occurrences of instructions in the
address range.

A click on a marker entry navigates the trace window to the corresponding position.

User's Guide Triggered Transfer Recorder 155 of 193

Triggered Transfer Recorder

UDE® TTF Recorder uses the Triggered Transfer Feature of Infineon microcontrollers.
Triggered Transfer is part of the on-chip debug support implemented on these controllers.
It allows the transfer of a value of a single memory location via the JTAG debug interface.
The transfer is triggered by a debug event of the on-chip debug support (OCDS) unit.
There are several types of debug events, which can trigger the transfer, depending on the
actual type of controller. A typical use case, provided by all supported controller types, is
to trigger on write accesses to a single variable and to transfer the new value of the
variable.

The recording is done while the target system is in running state. Activate the Add-In TTF
Recorder and open menu Views – Add-In Windows – TTF Records.

Setup

For configuration of the TTF recorder, use the context menu Setup Recording. Enable
the recording of transferred values and set the Address of the memory location or the
symbolic variable to be transferred when the trigger event has occurred. Depending on
the data wide of the transferred value, this has to be a valid 16-bit or 32-bit address.

For special purposes the trigger can
be setup on hardware level as User
defined trigger mode. It manages
the possibilities of the debug
hardware and special knowledge is
required.

156 of 193 FLASH / OTP Programming User's Guide

FLASH / OTP Programming

The UDE® Memory Programming Tool supports handling of on-chip FLASH, OTP and
EEPROM memory on all supported microcontrollers and external FLASH memory
devices. According to the capabilities of the respective programmable memory device this
tool allows to erase, program, verify and protect the module. The Intel-Hex and Motorola-
SRE format are supported.

There are two versions of UDE® Memtool:

1. an integrated UDE® Debugger Add-In used within an UDE® Workspace,

➢ build-in component of the UDE® architecture

➢ can use all communication channels supported by the UDE® Debugger

2. a stand-alone application used outside of the UDE® Debugger

➢ contains a separate front-end with direct access to all programming functions

➢ offers additional batch- and remote functions

➢ allows target communication via ASC bootstrap loading and Host PC serial port
additionally

Supported Functions

Depending on the capabilities of the memory device (and the driver used to handle the
device), UDE® Memtool provides functions to handle the device:

➢ a chip erase function, that deletes the contents of the whole memory device

➢ a sector erase function, that deletes the contents of one or more sectors of the
device

➢ a program function to write data into the memory device. This function also takes
care about certain data alignment requirements of the device

➢ a verify function that is implemented using the read functions of the target interface

➢ a query state Function that can read the state registers of the memory device

➢ a protect function that can be used to install, enable and disable read and write
protection mechanisms

Basic Concept

UDE® Memtool is intended to handle on-chip and external memory devices that do not
permit direct and random write accesses, e.g. as a RAM device does. Typically, on-chip
FLASH/OTP memory devices and external FLASH are of this type.

A target may contain several on-chip and external memory devices that can all be
handled by UDE® Memtool. At a given time, only one device is activated. For each
memory device, a Memory Device Handler inside UDE® Memtool handles all accesses to
the corresponding device. These Memory Device Handlers may be activated and
deactivated individually.

Programming of the memory device is done by the Memory Device Driver which is a
small application executed by the target MCU. UDE® Memtool uses functions, provided
by the UDE® Target Interface, to load and run this driver application.

User's Guide FLASH / OTP Programming 157 of 193

Target Communication

In the UDE® Memtool

➢ JTAG, DAP, SWD, OnCE, COP or

➢ ASC, CAN mini-monitors

are used for communication and FLASH programming. Target communication via JTAG,
DAP, SWD, OnCE, COP needs no external RAM and supports single-chip systems.

Mini-monitors uses on-chip resources, so that the FLASH programming works without
external RAM. Single-chip systems are supported.

The integrated UDE® Debugger Add-In uses the selected debug communication channel
for communication, debugging and FLASH programming. These debug-monitors require
external RAM per default.

The following table gives an overview about all available communication channels
supported by the integrated and the stand-alone UDE® Memtool:

Target µController and
communication interface

Host Serial
RS232

Universal Access
Device2

AURIX, TriCore, Power Architecture, Cortex,
ARM, RH850, SH-2A, XC200, XC166, XScale
via JTAG, DAP, SWD, OnCE, COP

 

AURIX, TriCore, C166, ST10, XC166,
XC2000, MPC55xx via ASC-BSL

1 

ST10, XC166, XC2000, AURIX, TriCore via
CAN-BSL

 

C166, ST10, XC166, XC2000, AURIX,
TriCore via K-Line

 

1) only available with the stand-alone UDE® Memtool 2) all variants.

Supported FLASH/OTP Memory Devices

On-chip FLASH/OTP memory devices on microcontroller supported by UDE® can be
programmed with UDE® Memtool.

External FLASH-EPROM's are also programmable …

➢ AMD Am29Fxxx, M29Wxxx family and 100% compatible types

➢ Atmel AT29Cxxx, AT49Cxxx family

➢ SST39VFxxx, SST39LFxxx family

➢ M58BWxxx family, ST58BWxxx family

➢ Intel i28Fxxx family

➢ I2C 24LCxx family

➢ all JEDEC Standard Command Set compatible.

For the list of supported external memory devices, see the file EXTFLASH.DAT in the UDE®

installation folder. If newer FLASH devices are available, which are not supported by
UDE® Memtool, please contact the PLS Support Team at support@pls-mc.com to
receive a newer version of the FLASH database.

Please note: Versions of UDE® Memtool shipped with UDE® Starterkits are limited to
memory devices provided by the respective Starterkit hardware. !

mailto:support@pls-mc.com

158 of 193 FLASH / OTP Programming User's Guide

FLASH

RAM e.g.

ROM

0x80'0000 0x90'0000 0

invisible memory range

visible memory range

PROGRAM CODE buried range

visual range

visual range

FLASH

RAM e.g.

0 0x90'0000

Remapped

 by MemTool

0x80'0000

PROGRAM CODE

buried range visual range visual range

Memory mapping variants

To understand how UDE® Memtool programs a user application into a programmable
memory device, it is necessary to consider the two memory mapping types used by UDE®
Memtool. It defines the memory mapping variants Program Time Mapping and Run
Time Mapping.

To understand the difference between these two mapping types, consider the following
scenario: Imagine a target system with the C16x, 1 MByte external RAM and 256 kByte
external FLASH.

After a target reset, the program code is fetched from the FLASH memory at segment 0

(physical address 0x00'0000). That is why the RAM is located by the initialization code at

segment 8 (physical address 0x80'0000). This constellation is called Run Time Mapping.

The program, which is in development state, is located at segment 0 (physical address

0x00'0000). For debugging purposes, the on-board RAM is mapped to segment 0, so that

breakpoints can be handled, for instance. After the development stage finished, the
program is programmed into the FLASH at segment 0, so that the power-on execution

can be done from the FLASH program content. However, at this moment the FLASH is
not visible at segment 0, because the RAM overlaps the FLASH range. That's why the
UDE® Memtool remaps all program code sections to another visible range of the FLASH
for FLASH programming, in this case at segment 8 (physical address 0x80'0000). This

constellation is called Program Time Mapping.

Run Time Mapping

Mapping type is used when the user application is executed.

Program Time Mapping

Mapping type used when the user application is about to be programmed into the
Memory Device,

To configure this example in UDE® following settings must be done: The FLASH memory
must be defined in the target configuration as memory device with a visible address
range: 0x80'0000-0x8F'FFFF. To allow the remapping of the program code sections the
UDE® Memtool must be setup with a different start address: 0x00'0000 (via Setup of
FLASH/OTP Device dialog).

Please see the next chapter for more detailed information about the configuring of FLASH
memory devices !

User's Guide FLASH / OTP Programming 159 of 193

Definition of external FLASH Memories

Before FLASH programming is possible, the external FLASH devices must be defined in
target configuration of UDE®. This can be done during creating of a new Target
Configuration, but by editing an existing configuration too.

Create a new Target Configuration with FLASH support

Create a new target configuration and specify the count of FLASH memory devices in
page New Target Specify Memory. Define the device with name and description in page
New Target Special Memory and select as Handler UDE FLASH/OTP Memory
Programming Tool. Setup the used Bus Mode of the FLASH device, the FLASH Type,
which means the family of FLASH devices and the Start and End Address, where the
FLASH device is visible completely.

Edit an existing Target Configuration with FLASH support

When the target is connected, open the Edit Target Configuration dialog via menu
Config – Target Configuration and select the controller item in the target tree. Via the
Add and Modify button, you can change the list of registered memory devices. Use
Remove for deleting of entries.

Push Add to setup a new memory device. Enter a name and a description of the FLASH
memory and enable the handling by UDE FLASH/OTP Memory Programming Tool.
Select the used Bus Mode of the FLASH device and the FLASH Type, which means the
family of FLASH devices.

Add a new address range, where the FLASH device is visible completely.

Definition of on-chip FLASH Memories

The on-chip FLASH devices are registered automatically. The requirement is that the
correct controller derivative is selected in the target configuration. In this case, an
additional memory device labeled with PFLASH or DFLASH is included. Please check,
that the on-chip FLASH is enabled on the property sheet of the device.

Please note: For programming on-chip FLASH modules of C16x and ST10Fx derivatives,
the on-chip FLASH module must be activated (SYSCON.ROMEN=1) and mapped to starting

address 0x10000 (SYSCON.ROMS1=1).

To run the FLASH driver software, XRAM must be enabled (SYSCON.XPEN=1).

!

160 of 193 FLASH / OTP Programming User's Guide

Definition of Memory Access Filters

A memory access filter is used like a FLASH Memory Device with the difference, that no
FLASH programming functionality is provided, but various memory access filter functions.
Memory access filters are useful, if devices, visible in the address range of the
microcontroller, must not be read and/or written by UDE®. A memory access filter
reserves an address range and can be specified as

➢ Block any access

➢ Block any write access

➢ Notify user on write access

Define the memory access filter as new memory device with name and description in
page New Target Special Memory of the target configuration and select as Handler
Memory access filter.

Enabling the FLASH Programming

The UDE® Memory Programming Tool is an Add-In of UDE® and must be activated. This
is done via the Add-In Manager, menu Config – Add-in Components. Enable the entry
UDE FLASH/OTP Memory Programming Tool.

The detailed description about Add-Ins is contained in the chapter Activating and Using
Add-Ins.

If the UDE® FLASH/OTP Memory Programming Tool is enabled, a new menu entry is
created in UDE® menu Tools – FLASH Programming …. Open this dialog and the main
front-end of UDE® Memtool will be opened. Choose the FLASH device and try to enable
it. If all settings were correct, a list of FLASH sectors will be displayed as shown below.

If not, please check carefully all FLASH device settings, the target hardware and the
content of the SYSTEM and BUSCONFIG registers again. The FLASH device must be
visible in full size. Use the Memory window to verify your assumption about the hardware
in terms of the address ranges of RAM and FLASH.

As shown above, a list of FLASH sectors is displayed. These sectors are located on the
FLASH addresses adjusted to the corresponding physical address ranges defined in the
target configuration. Because the program code is mostly located at 0x0, the 'Program

Time Mapping' must be activated.

Push the Setup… button to set the Use different Start Address to 0x0. Now the

'Program Time Mapping' is selected within UDE® and the code range filter will be
activated from physical address 0x0 with the size of the FLASH device.

!

User's Guide FLASH / OTP Programming 161 of 193

FLASH Programming

If the UDE® FLASH/OTP Memory Programming Tool is enabled, all registered FLASH
devices are installed with special filters. These filters watch the download stream for
address ranges, matching a registered FLASH device. If the filters detect, that a code
section is loaded, which is destined for the FLASH device, the code section will be
marked for FLASH programming.

After loading the program code sections, the FLASH Programming Tool will open the
main dialog and will offer the erasing, programming and verifying of code sections.

The Erase ... button allows the erasing of single FLASH sectors or complete FLASH
devices. Because of the FLASH architecture, a FLASH sector has to be erased before
new FLASH programming. Before starting the Erase Function, the Select FLASH
Sectors for Erase dialog is shown. One or more sectors to be erased can be selected
here. If the current Memory Device supports a Chip Erase Function, you may choose
Erase whole FLASH Module to execute this function. Otherwise, Sector Erase Function
is used.

Program immediately starts to write all sections loaded into the current Memory Device
Handler. It presents the Execute Command Box showing the function progress.
Canceling of the operation is also provided.

162 of 193 FLASH / OTP Programming User's Guide

The Verify function immediately starts to compare all sections loaded into the current
Memory Device Handler against the contents of the Memory Device on target. It presents
the Execute Command Box showing the function progress. Canceling of the operation is
also provided. As the result, after the function has finished, the number of different bytes
is shown.

Setup ... provides setup for FLASH programming options.

The Info ... window shows information about the current Memory Device and the Memory
Device Driver used to handle the device.

Setup FLASH Programming options

Mapping – If Run Time Memory Mapping and Program Time Memory Mapping are not
equal, check the Use different Start Address checkbox and enter a valid Run Time
Mapping start address for the Memory Device.

Driver – The Driver page allows the replacement of FLASH drivers and is destined for
special purposes. Changes have to be only done in accordance with the PLS Support
Team.

Program – The options Automatic Chip Erase Before Program and Automatic Sector
Erase Before Program allows the automatic erasing of sectors or devices before
programming with new data.

With Simulate Random Access Mode, all sectors to be programmed with new data are
completely read out into buffers. Then, these sectors are erased. Now the buffered data
is merged with the new data to be programmed and the result is written back to the
memory device.

The verify function is started after programming has finished when Automatic Verify
after Program is enabled.

User's Guide CAN Recorder 163 of 193

CAN Recorder

The UDE® CAN Recorder is an Add-In of UDE® and can send and record CAN messages
from a CAN network. Following features are supported:

➢ Configuring the CAN controller

➢ Edit and Send CAN messages (CAN bus stimulation)

➢ Receive CAN messages (CAN bus observation) with filter mechanism

➢ Symbolic representation of CAN messages

Enabling the UDE® CAN Recorder

The UDE® CAN Recorder is an Add-In of UDE® and must be activated. This is done via
the Add-In Manager, menu Config – Add-in Components. Enable the entry UDE CAN
Recorder.

If the UDE® CAN Recorder is enabled, a new menu entry is created in UDE® menu Views
– Add-In Windows – CAN Records. Start the CAN Recorder via this menu entry.

Send and Record CAN Messages

Before using the CAN Recorder, it has to be configured. Use the
context menu and click on Setup Recording. Specify the baud
rate of the CAN bus in the tab Timing. Setup the CAN message
format and mask in the tab Recording.

To record messages from the CAN network, use the context menu
and enable the Record entry. All messages are recorded and
displayed, which correspond to the defined filter mask.

To send a message, type in the ID and Data form and push the
Send button.

164 of 193 RTX Awareness User's Guide

RTX Awareness

The UDE® RTX Awareness is an Add-In of UDE® that give a detailed overview about the
RTX RTOS internals. These internals can be:

➢ Tasks overview including all states

➢ Queue overview (per Message/Semaphore/Mutex Control Block information)

➢ Timers overview (name, timer count, unique callback information)

➢ Signals overview (waiting/active events mask)

Enabling the RTX Awareness

The UDE® RTX Awareness is an Add-In of UDE® and must be activated before it can be
used. To activate it, open the Add-In Manager, menu Config – Add-in Components.
Enable the entry RTX Awareness.

After the UDE® RTX Awareness was enabled, a new menu entry is created in UDE®
menu Views – Add-In Windows – RTX Awareness. Open the RTX Awareness by
clicking on this menu entry.

Depending on the functions enabled in the RTOS configuration file the RTX Awareness
window immediately shows a snapshot of the current system state:

The green line inside the RTX Awareness marks the task that was active/running before
the system was halted by the debugger. Please note, because the RTOS creates the
tasks at runtime, maybe not all tasks are displayed if the system was broken immediately
after first go/step.

Using the RTX Awareness

To work with the RTX Awareness, first an RTX RTOS application AXF file must be
loaded. The RTX RTOS application itself can be built using the Keil compiler. Please also
note that the RTX RTOS version must be greater than or equal to v4.x.

After the RTX application was loaded, the RTX must be initialized and all needed tasks
must be created. This is normally done by an init() function. The init function itself is

therefore called by os_sys_init inside the main-function.

If the initialization was performed successfully, all created tasks are listed in the RTX
Awareness as shown above. By setting breakpoints inside the application, the behavior
of each task can now be monitored by using the RTX Awareness.

User's Guide rcX Awareness 165 of 193

rcX Awareness

The UDE® rcX Awareness is an Add-In of UDE® that gives a detailed overview about the
rcX RTOS internals. These internals can be:

➢ Tasks overview including all states

➢ Queues overview (name, fill level, memory usage)

➢ Mutex overview (name, owner task)

➢ Semaphores overview (name, modes, state, callback)

➢ Interrupts overview (name, type, priority, ISR)

➢ UARTs overview (name, state, speed, callbacks)

The functions are mostly similar to the RTX Awareness above.

Enabling the rcX Awareness

The UDE® rcX Awareness is an Add-In of UDE® and must be activated before it can be
used. To activate it, open the Add-In Manager, menu Config – Add-in Components.
Enable the entry rcX Awareness.

After the UDE® rcX Awareness was enabled, a new menu entry is created in UDE® menu
Views – Add-In Windows – rcX Awareness. Open the rcX Awareness by clicking on
this menu entry. Depending on the functions enabled in the RTOS configuration file the
rcX Awareness window immediately shows a snapshot of the current system state:

The green line inside the rcX Awareness marks the task, which was active/running before
the system was halted by the debugger. Please note, because the RTOS creates the
tasks at runtime, not all tasks might be displayed, if the system was halted immediately
after the first go/step.

Using the rcX Awareness

To use the rcX Awareness, load an rcX RTOS application ELF file. The rcX RTOS
application itself can be built using the GNU ARM compiler. Please also note that the rcX
RTOS version must be greater than or equal to v2.x.

After the rcX application was loaded, the rcX RTOS must be initialized and all needed
tasks must be created. This is normally done by an init() function. The init function itself

is therefore called by rX_SysEnterKernelExt inside the main-function.

If the initialization was performed successfully, all created tasks are listed in the rcX
Awareness as shown above. By setting breakpoints inside the application, the behavior
of each task can now be monitored, using the rcX Awareness.

166 of 193 FreeRTOS Awareness User's Guide

FreeRTOS Awareness

The UDE® FreeRTOS Awareness is an Add-In of UDE® that gives a detailed overview
about the FreeRTOS internals. These internals can be:

➢ Tasks overview (name, state, priority, stack …)

➢ Queues overview (name, size, items, blocked tasks, …)

➢ Semaphore and mutexes overview (name, count, blocked tasks, …)

➢ Timers overview (name, ticks, callback, …)

➢ FreeRTOS Configuration.

Additionally, the Add-In provides an automated configuration for task trace and analyses
configuration for the Execution Sequence Chart.

Enabling the FreeRTOS Awareness.

The UDE® SAFERTOS/FreeRTOS Awareness is an Add-In of UDE® and must be
activated before it can be used. To activate it, open the Add-In Manager, menu Config –
Add-in Components. Enable the entry SAFERTOS/FreeRTOS Awareness.

After the UDE® SAFERTOS/FreeRTOS Awareness was enabled, a new menu entry is
created in UDE® menu Views – Add-In Windows – SAFERTOS/FreeRTOS Awareness.
Open the SAFERTOS/FreeRTOS Awareness by clicking on this menu entry. Depending
on the functions enabled in the FreeRTOS configuration header file the FreeRTOS
Awareness window immediately shows a snapshot of the current system state:

The green line marks the task, which was active/running before the system was halted by
the debugger. Please note, because the RTOS creates tasks at runtime, not all tasks
might be displayed, if the system was halted immediately after the first go/step.

FreeRTOS Task Trace

The task trace can be configured right clicking on any table and selecting Configure
Trace …

Select Trace Task and Trace Program.

Record the Trace using the menu Entry Tools – Start Trace… and analyze it using the
Execution Sequence Chart.

Please note, that only Tasks, available during configuration, can be displayed in the
Execution Sequence Chart. !

User's Guide SAFERTOS Awareness 167 of 193

Using the FreeRTOS Awareness

To use the FreeRTOS Awareness, load an FreeRTOS application ELF file. Please also
note that the FreeRTOS Awareness was developed for FreeRTOS version greater than
or equal to 10.2.x.

If an FreeRTOS application was loaded and the initialization was performed successfully,
all created tasks are listed in the FreeRTOS Awareness as shown above. By setting
breakpoints inside the application, the behavior of each task can now be monitored, using
the FreeRTOS Awareness.

Refer to the online help (F1 or Shift+F1) for a more detailed description.

SAFERTOS Awareness
The UDE® SAFERTOS Awareness is an Add-In of UDE® that gives a detailed overview
about the SAFERTOS internals. These internals can be:

➢ Tasks overview (name, state, priority, stack …)

➢ Queues overview (name, size, items, blocked tasks, …)

➢ Semaphore and mutexes overview (name, count, blocked tasks, …)

➢ Timers overview (name, ticks, callback, …)

Enabling the SAFERTOS Awareness

The UDE® SAFERTOS/FreeRTOS Awareness is an Add-In of UDE® and must be
activated before it can be used. To activate it, open the Add-In Manager, menu Config –
Add-in Components. Enable the entry SAFERTOS/FreeRTOS Awareness.

After the UDE® SAFERTOS/FreeRTOS Awareness was enabled, a new menu entry is
created in UDE® menu Views – Add-In Windows – SAFERTOS/FreeRTOS Awareness.
Open the SAFERTOS/FreeRTOS Awareness by clicking on this menu entry. Depending
on the functions enabled in the SAFERTOS configuration header file the SAFERTOS
Awareness window immediately shows a snapshot of the current system state:

The green line marks the task, which was active/running before the system was halted by
the debugger. Please note, because the RTOS creates the tasks at runtime, not all tasks
might be displayed, if the system was halted immediately after the first go/step.

SAFERTOS Task Trace

The task trace can be configured right clicking and selecting Configure Trace…

Select Trace Task and Trace Program.

168 of 193 PXROS-HR Awareness User's Guide

Record the Trace using the menu Entry Tools – Start Trace… and analyze it using the
Execution Sequence Chart.

Please note, that only Tasks, available during configuration, can be named in the
Execution Sequence Chart.

If tasks are available after the trace is run, you can repeat configuring the trace.

Using the SAFERTOS Awareness

To use the SAFERTOS Awareness, load an SAFERTOS application ELF file. Please also
note that the SAFERTOS Awareness was developed for SAFERTOS version greater
than or equal to 6.2.

If an SAFERTOS application was loaded and the initialization was performed
successfully, all created tasks are listed in the SAFERTOS Awareness as shown above.
By setting breakpoints inside the application, the behavior of each task can now be
monitored, using the SAFERTOS Awareness.

Refer to the online help (F1 or Shift+F1) for a more detailed description.

PXROS-HR Awareness
The UDE® PXROS-HR Awareness is an Add-In of UDE® that gives a detailed overview
about the PXROS-HR internals. These internals can be:

➢ OS overview (running task information)

➢ Tasks overview (name, id, priority, stack, default objects, …)

➢ Memory classes overview (id, type, left memory)

➢ Messages overview (id, sender, recipient, data)

➢ Mailboxes overview (id, waiting tasks, messages, …)

➢ Object pools overview (id, type, objects left)

➢ Interrupts overview (id, interrupt, handle information)

➢ Timers overview (id, type, ticks, callback/events, …)

➢ Inter core communication

Enabling the PXROS-HR Awareness

The UDE® PXROS-HR Awareness is an Add-In of UDE® and must be activated before it
can be used. To activate it, open the Add-In Manager, menu Config – Add-in
Components. Enable the entry PXROS-HR Awareness.

After the UDE® PXROS-HR Awareness was enabled, a new menu entry is created in
UDE® menu Views – Add-In Windows – PXROS-HR Awareness. Open the PXROS-HR
Awareness by clicking on this menu entry. Depending on the functions enabled in the
SAFERTOS configuration header file the PXROS-HR Awareness window immediately
shows a snapshot of the current system state:

!

User's Guide PXROS-HR Awareness 169 of 193

Please note, because PXROS-HR creates most objects at runtime, not all of them might
be displayed, if the system was halted immediately after the first go/step.

PXROS-HR Task Trace

The task trace can be configured right clicking on any table and selecting Configure
Trace…

A Dialog shows all selectable cores. Select Trace Task and Trace Program of the cores,
you want to see. The number of cores that can actually be configured depends on the
capabilities of MCDS.

Record the Trace using the menu Entry Tools – Start Trace… and analyze it using the
Execution Sequence Chart.

Please note, that only tasks, available during configuration, can be named in the
Execution Sequence Chart. Other tasks are named after their object id.

If tasks are available after the trace is run, repeat configuring the task trace.

Using the PXROS-HR Awareness

To use the PXROS-HR Awareness, load an PXROS-HR application ELF file. Please also
note that the PXROS-HR Awareness was developed for PXROS-HR version greater than
or equal to 7.3. After the PXROS-HR application was loaded, PXROS-HR must be
initialized. This is normally done by the PxInit() function.

!

!

170 of 193 µC/OS-II Awareness User's Guide

If the initialization was performed successfully, all system objects are listed in the
PXROS-HR Awareness. The OS tab refers to the running tasks as shown above. By
setting breakpoints inside the application, the behavior of each task can now be
monitored by using the PXROS-HR Awareness.

µC/OS-II Awareness
The UDE® µC/OS-II Awareness is an Add-In of UDE® that gives a detailed overview
about the µC/OS-II internals. These internals can be:

➢ Overview (running task, statistics, …)

➢ Tasks overview (name, state, priority, stack, reference, …)

➢ Semaphore overview (name, reference, count)

➢ Mutex (name, reference, priority information)

➢ Mailboxes overview (name, reference, msg)

➢ Queue (name, reference, fill level, …)

➢ Flag Group (name, reference, flags, wait type)

➢ Memory (name, reference, memory partition and usage)

➢ µC/OS-II Configuration

Enabling the µC/OS-II Awareness

The UDE® µC/OS-II Awareness is an Add-In of UDE® and must be activated before it can
be used. To activate it, open the Add-In Manager, menu Config – Add-in Components.
Enable the entry µC/OS-II Awareness.

After the UDE® PXROS-HR Awareness was enabled, a new menu entry is created in
UDE® menu Views – Add-In Windows – µC/OS-II Awareness. Open the PXROS-HR
Awareness by clicking on this menu entry. Depending on the functions enabled in the
SAFERTOS configuration header file the µC/OS-II Awareness window immediately
shows a snapshot of the current system state:

Please note, because PXROS-HR creates most objects at runtime, not all of them might
be displayed, if the system was halted immediately after the first go/step.

µC/OS-II Trace

The task trace can be configured right clicking on any table and selecting Configure
Trace – Task Trace.

Select Trace Task and Trace Program.

!

User's Guide A2L File Support 171 of 193

Record Trace using the menu Entry Tools – Start Trace… and analyze it using the
Execution Sequence Chart.

Please note, that only tasks, available during configuration, can be named in the
Execution Sequence Chart. Other tasks are named after their reference.

If tasks are available after the trace is run, you can repeat configuring the trace.

Using the µC/OS-II Awareness

To use the µC/OS-II Awareness, load an µC/OS-II application ELF file. Please also note
that the µC/OS-II Awareness was developed for µC/OS-II only. µC/OS and µC/OS-III may
not be displayed correctly. After the µC/OS-II application was loaded, µC/OS-II must be
initialized. This is normally done by the OSStart() function.

If the initialization was performed successfully, all system objects are listed in the µC/OS-
II Awareness. The Task tab refers to the created tasks as shown above. By setting
breakpoints inside the application, the behavior of each task can now be monitored by
using the µC/OS-II Awareness.

Refer to the online help (F1 or Shift+F1) for a more detailed description.

A2L File Support
A2L is the file format of the ASAP2 standard, which implements ASAM MCD-2 MC for
internal ECU variables, used for measurement and calibration. To activate UDE® A2L File
Add-In, open the Add-In Manager, menu Config – Add-in Components. Enable the
entry A2L File Support.

Using the A2L File Support

After the UDE® A2L File Support was enabled, a new menu entry is created in UDE®
menu Views – Add-In Windows – A2L File Support. Open the A2L File Support by
clicking on this menu entry.

The context menu of the A2Lsupport window allows loading and unloading an A2L file.
After loading the file, select variables from the different A2L sections of the file. By
activating a line in the variable list, the variables properties are displayed at the right side
of the window. Change the value by editing the text or selecting a different drop-down box
item. Invalid (numerical) entries will ignored, if they are of a different data type as the
variable, or cut to the upper and lower limit range of the variable. A modified value is
written to memory immediately.

!

172 of 193 Protection Settings User's Guide

If the value of a variable changed otherwise, either manually editing in the memory
window or by the program, the corresponding variable name will be highlighted in red
color.

Protection Settings
Protection Settings provides the possibility to observe and edit the configuration of all
supported Protection Modules (e.g. MPUs).

Using Protection Settings

Use menu View – Architecture Support to open the Protection Settings window. The
Table shows all available Protection Modules and Sub-Modules as an expandable Tree.

To display a more detailed view of a Module/Submodule select it in the table, the Detailed
View is on the left-hand side. In each of the two views (Table/Detail) values that are
modified by the User are displayed blue and those which are changed in the memory
since last refresh are displayed red.

Via the context-menu it is possible to manually refresh or apply the settings. In the
properties dialog the values that are displayed as columns of the table can be chosen to
ensure comparability. It is possible to store and load configurations through the Context
Menu.

User's Guide Activating and Using Add-Ins 173 of 193

Activating and Using Add-Ins

UDE® is a component-oriented development workbench. UDE® as the working
environments of UDE® can be extended with Add-Ins to expand the functionality of the
UDE® development workbench.

Each Add-In can be activated individually
for each project workspace. If a new
project workspace is created, add-ins are
deactivated by default.

Activating an Add-In

To activate an Add-In within your project
workspace, follow these steps:

1. Run UDE® and load your project
workspace.

2. Use menu Config – Add-In
Components to open the UDE® Add-In
Manager. The manager dialog shows a
list of all UDE® Add-Ins that are
available within your UDE® installation.
A checkbox shows whether an Add-In
Component is already loaded into the
current workspace.

3. Mark the checkbox left of the Add-In to activate.

4. Use the OK button to close the Add-In manager dialog.

5. The add-in inserts new menu entries. Please see the reference of the add-in for more
information using the add-in.

Removing an Add-In

To remove an Add-In from your project workspace, use menu Config – Add-In
Components to open the UDE® Add-In Manager. Now uncheck the entry of the used
Add-In.

174 of 193 Eclipse IDE for UDE® User's Guide

Eclipse IDE for UDE®

Supported Eclipse IDE Versions

UDE® provides following Eclipse Integration package:

➢ UDEEclipse4Integration.zip - supports the Eclipse 4.x based platform.

The selection of the appropriate installation package depends from basic Eclipse version.

Please note, that the Windows 64-bit Installation Package of the appropriate Eclipse
version must be used for UDE® Eclipse Integration plug-in.

Eclipse
Version

Required C/C++-
Development
Plug-In Version

Start Bitmap
Supported by

UDE® Eclipse Integration
Package

Eclipse 4.8
(Photon),

Java 8

CDT 9.5

UDEEclipse4Integration.zip

Eclipse 4.35
(2025-03),

Java 11

CDT 12.0

UDEEclipse4Integration.zip

ST SPC5
Studio
Based on

Eclipse (Juno)

CDT 8.1 with
additional ST CDT
extension plug-ins

UDEEclipse4Integration.zip

Prepare Eclipse IDE for UDE® Integration Package

The UDE® Eclipse Integration Package Eclipse 4.x UDEEclipse4Integration requires
following further environment:

➢ 64-bit version of Eclipse package including an appropriate CDT package

➢ 64-bit version of Java JRE 8 (Eclipse 4.8-4.13)

➢ 64-bit version of Java JRE 11 (Eclipse 4.13-4.35) or higher.

!

User's Guide Eclipse IDE for UDE® 175 of 193

Install UDE® Eclipse Integration Package

1. Start appropriate Eclipse IDE.

2. Open the Software Update dialog of the Eclipse Help menu Install New Software...

3. Select button Add...

4. Select button Archive... and browse for
<UDE_DIRECTORY>\UDEEclipse4Integration.zip

for Eclipse 4.x IDE from UDE® root installation directory.

5. Check Universal Debug Engine Eclipse 4 Integration package in the list control of
available software packages.

6. Select Next button for installation.

7. Press Install... button.

8. Finish installation of UDE® Universal Debug Engine Eclipse 4 Integration feature.

Launching UDE® Debug Session in Eclipse IDE

Creating UDE® Eclipse Platform Launch Configuration

The integration of UDE® Universal Debug Engine into Eclipse IDE for C/C++ developers
enables to launch an UDE® debug session by a specific debug configuration of a C/C++
project. This launch configuration can be created from local menu of the appropriate
C/C++ project:

➢ Change to C/C++ perspective

➢ Click with right mouse button into the project tree root of the Project Explorer view
to open local menu

➢ Select Debug As menu, submenu Debug Configurations... to open Debug
Configurations dialog

176 of 193 Eclipse IDE for UDE® User's Guide

➢ Select the Universal Debug Engine launch configuration type

➢ Press the New Launch Configuration button to create a new launch configuration
for the selected project.

➢ The Main, Source and Common tabs are common elements of each C/C++ launch
configuration dialog.

➢ The UDE Startup tab contains all settings, which are necessary for a specific UDE®
launch configuration.

User's Guide Eclipse IDE for UDE® 177 of 193

➢ The two settings for UDE Workspace File and UDE Target Configuration File are
required for a valid UDE® launch configuration.

➢ The selection of an UDE Diagnostic output file is optional.

The file system directory of an UDE® Workspace File for an UDE® Eclipse launch
configuration is the C/C++ project directory subdirectory ../.UDE. The default location of

the UDE® Target Configuration File is the C/C++ project file system location subdirectory
../.UDE/.TARGET. The additional functions allow to import or export existing UDE®

workspaces and UDE® target configurations to or from default or common location of
UDE® Universal Debug Engine from or to the relative paths of the Eclipse C/C++ project
locations. A detailed description of all buttons is contained in the UDE® helps system.

Steps to start Debug Session with UDE® Eclipse Launch
Configuration

The newly created UDE® launch configuration allows
launching a debug session using UDE® via Debug button
of Eclipse IDE tool bar.

Use the Debug button of the tool bar of the Run menu
Debug item (shortcut F11) to start the created launch
configuration, which opens the UDE® perspective, loads
the selected workspace file and uses the selected target
configuration to connect to the target debug system.

Add UDE® Sample Project to Eclipse C/C++ IDE

Creating Eclipse Makefile Project from UDE® TimeDemo Sample

UDE® sample makefile projects can be easily imported as Eclipse C/C++ projects using
the Eclipse import wizard:

➢ Change to C/C++ perspective

➢ Open the Import... wizard of Eclipse File menu.

➢ Select C/C++ -> Existing Code as Makefile Project

➢ On the next wizard page use browse button to select UDE® sample directory

➢ Add an appropriate project name

➢ Check the Languages checkbox C only

➢ Select <none> as tool chain

178 of 193 Eclipse IDE for UDE® User's Guide

➢ Select the context menu of TimeDemo – HighTec_IntRam – TimeDemo.elf in the

project explorer and Debug As – Debug Configurations… to prepare start of debug
session

➢ The Debug Configurations dialog Main page will be opened to select the type of
launch configuration to start debug session

➢ Select the context menu of Universal Debug Engine and New Configuration, a
new AppKit_TC275 Default configuration is created

➢ Browse… the C/C++ Local Application to select the binary file (*.elf/*.out),

which will be loaded by the launch configuration into target system. Select the
appropriate binary file of current build configuration.

➢ Change to the UDE® Startup page and check the correct Select UDE Target
Configuration File. See the chapter above.

The UDE® launch configuration is
now ready for use.

User's Guide UDE® Object Model 179 of 193

UDE® Object Model

Overview

The UDE® object model built on the Microsoft COM technology allows the controling the
UDE® Universal Debug Engine and UDE® Memtool, start and stop programs running
on the target, set breakpoints, flashing code and much more. The UDE® objects are
acccessable from external scripts as well from internal scripts in UDE®.

A detailed documentation and examples for using the UDE® object model can be found at

<UDE_DIRECTORY>\Help\UDEObjectModel.chm

<UDE_DIRECTORY>\Help\UDEAutomation.chm

<UDE_DIRECTORY>\Help\PythonAddOn.chm and via the UDE® Help system (press F1).

Automation Guide and Object Model Reference

The full descriptions and relationships of the UDE® objects are explained in the UDE®
Object Model Help via menu Help – Help Index and open the content Universal Debug
Engine – UDE Common Components – UDE Automation Guide and Object Model
Reference.

Please contact support@pls-mc.com for more samples of using the UDE® object model. ?

mailto:support@pls-mc.com

180 of 193 UDE® Object Model User's Guide

An external Script-Example for TriCore in Python

The following automation example shows how to start, debug and close UDE® from an
external Python script interpreter.

The external script creates a new workspace (1), connect to the target (2), loads the
target application (3), starts the application (4), read a variable value from the target (5),
disconnects the target and closes UDE® (6).

UDE automation basics - Python demo script
On command line run: "python UdeAutomationDemo.py"

import os
import win32com.client

print("Create new UDELauncher object")
ProgId = "UDELauncher"
UDELauncher = win32com.client.Dispatch(ProgId)
print(" Launcher: " + UDELauncher.Version)

WspFile = os.path.abspath(".") + "\\TC275_ApplicationBoard.wsx"
CfgFile = os.path.abspath(".") + "\\AppKit_TC275C_jtag.cfg"
ElfFile = os.path.abspath(".") + "\\MulticoreDemo.elf"

print("Start new UDE instance") # (1)
UDEApplication = UDELauncher.StartAndCreateWorkspace("UDE.exe", WspFile, \

CfgFile, 1)
print(" UDE version: " + UDEApplication.VersionInfo)

print("Access workspace")
UDEWorkspace = UDEApplication.Workspace
print(" Workspace: " + UDEWorkspace.ProjectTitle)

print("Wait for target connected") # (2)
if not UDEWorkspace.WaitForTargetConnected(10000): # 10s timeout
 print("ERROR: target not connected !")
UDEDebugger = UDEWorkspace.CoreDebugger(0)

print("Load target application") # (3)
if not UDEDebugger.LoadAndFlash(ElfFile,"VerifyOnly"):
 if not UDEDebugger.LoadAndFlash(ElfFile):
 print("ERROR: failed to load elf file !")

print("Start target application") # (4)

UDEDebugger.Go()
if not UDEWorkspace.WaitForAllCoresRunning(1000, False): # 1s timeout
 print("ERROR: target not running !")

print("Wait a second")
UDEWorkspace.Sleep(1000)

print("Read some variables") # (5)
Seconds = UDEDebugger.ReadVariable("g_SharedData.Seconds")
print(" Time: %02d" % Seconds)

print("Set a breakpoint and wait for halt")
UDEDebugger.Breakpoints.Add("MulticoreDemo.c 352")
UDEDebugger.WriteVariable("g_SharedData.Seconds",58) # trigger halt breakpoint
if not UDEDebugger.WaitForHalt(3000): # 3s timeout
 print("ERROR: not halted at breakpoint !")

print("Release objects and Close UDE instance") # (6)
UDEDebugger = None
UDEWorkspace = None
UDELauncher.StopInstance(UDEApplication)

print("Finished")

User's Guide Python Script Console 181 of 193

Python Script Console

The Python Script Add-In implements an interactive command line interface to an
embedded Python 3 interpreter provided in a UDE® Python Script console.

Supported Functions

Input can be entered directly into the console or loaded from external sources, the output
is displayed in the UDE® Python Script console view. Following functions are supported

➢ Embedded Python V3.7.0a0 (UDE 2022) / V3.10.4+ (UDE 2023) / V3.12.7+ (UDE
2024) / V3.12.10+ (UDE 2025+) interpreter

➢ Inline execution of simple Python statements

➢ Execution of Python scripts

➢ Auto-completion of Python keywords and UDE® class methods and properties

➢ Variable inspections

➢ Callback functions for UDE® events

➢ External dialog interface

➢ Support of an external Python interpreter.

Enabling the Python Script Console

Open the Python Script Console via UDE® menu Views - Other Windows - Python
Script Console.

Accessing the UDE® object model

The Python script console provides some predefined UDE® COM objects. Currently these
UDE® COM objects are available:

UDEUtilities # .. DIUDEUtilities
UDEApplication # .. IUDEApplication
UDEWorkspace # .. IUDEWorkspace

An example of accessing the UDE® debugger and break the current program execution:

>>> UDEDebugger = UDEWorkspace.GetActiveDebugger()
>>> UDEDebugger.Break()
>>> UDEWorkspace.ProjectTitle()

Refer to the online help (F1) for a more detailed description.

182 of 193 User Definable Enhancements User's Guide

User Definable Enhancements

The UDE® concept allows extending the debugger functions by additional components in
the following levels:

➢ HTML scripts based on UDE® ActiveX™ controls, customer specific controls and
access via the UDE® object model to display consumer-defined windows with UDE®
HTML windows server. For a description of these features, see the chapter about
Viewing and Modifying Registers and the UDE® object model.

➢ Programming a custom view server can solve complex problems and can provide
detailed and optimized target related windows, e.g. for integrating specific RTOS, CAN
windows.

➢ The UDE® client may be substituted by a customer GUI for production and field
maintenance purposes, e.g. for Service Tools, Matlab or CASE tool integration. The
functionality of the core debugger can be extended or even reduced to enable
essential windows and features only. Please see for further information the chapter
about the UDE® object model.

Please contact support@pls-mc.com for more information and examples about the
UDE® extensions.

?

mailto:support@pls-mc.com

Reference 183 of 193

Reference

The Reference of the UDE® Universal Debug Engine is available via the Window's Help
system of UDE®. To use the help, please open UDE® and press F1 or browse to the
UDE® installation menu and select in UDE® menu Help.

Copyrights 185 of 193

Copyrights

List of Open Source Software Components
This chapter contains a list of open source software (OSS) components used within the
product under the terms of the respective licenses. The source code corresponding to the
open source components is also provided along with the product wherever mandated by
the respective OSS license.

MCD Software License: ARM Ltd, Infineon Technologies,
NXP, Lauterbach, STMicroelectronics, TIMA Laboratory
Copyright (c) 2008, ARM Ltd., Infineon Technologies, NXP Semiconductors, Lauterbach, STMicroelectronics and TIMA Laboratory. All rights
reserved. PREAMBLE The MCD API (Multi-Core Debug) has been designed as an interface between software development tools and simulated or
real systems with multi-core SoCs. The target is to allow consistent software tooling throughout the whole SoC development flow. The MCD API (the
"SOFTWARE") has been developed jointly by ARM Ltd., Infineon Technologies, NXP Semiconductors, Lauterbach, STMicroelectronics and TIMA
Laboratory as part of the SPRINT project (www.sprint-project.net). The SPRINT project has been funded by the European Commission. LICENSE
Any redistribution and use of the SOFTWARE in source and binary forms, with or without modification constitutes the full acceptance of the following
disclaimer as well as of the license herein and is permitted provided that the following conditions are met: - Redistributions of source code must retain
the above copyright notice, this list of conditions and the disclaimer detailed below. - Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the disclaimer detailed below in the documentation and/or other materials provided with the distribution. -
Neither the name of its copyright holders nor the names of its contributors may be used to endorse or promote products derived from the Software
without specific prior written permission. - Modification of any or all of the source code, documentation and other materials provided under this license
are subject to acknowledgement of the modification(s) by including a prominent notice on the modification(s) stating the change(s) to the file(s),
identifying the date of such change and stating the name of the publisher of any such modification(s). DISCLAIMER OF WARRANTY AND LIABILITY
THE SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE, MISREPRESENTATION OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

Demangle Software License: Free Software Foundation
Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 2000, 2001, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc. This program is free

software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software
Foundation; either version 2, or (at your option) any later version. In addition to the permissions in the GNU Library General Public License, the Free
Software Foundation gives you unlimited permission to link the compiled version of this file into combinations with other programs, and to distribute
those combinations without any restriction coming from the use of this file. (The Library Public License restrictions do apply in other respects; for
example, they cover modification of the file, and distribution when not linked into a combined executable.) This program is distributed in the hope that
it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public
License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA
In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled
version of this file into combinations with other programs, and to distribute those combinations without any restriction coming from the use of this file.
(The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked
into a combined executable.) The files 'cp-demangle.cpp', 'cp-demangle.h' and 'demangle.h', which are published using this license, are used
in UDE program only unmodified and the compiled versions of these files are linked into combinations with other program parts.
On request we deliver the source code of these files. GNU GENERAL PUBLIC LICENSE Version 2, June 1991 Copyright (C) 1989, 1991 Free
Software Foundation, Inc. 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA Everyone is permitted to copy and distribute verbatim
copies of this license document, but changing it is not allowed. Preamble The licenses for most software are designed to take away your freedom to
share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to
make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any
other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Lesser General Public
License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you
receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can
do these things. To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it. For example, if you distribute
copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know their rights. We protect your rights with two steps: (1)
copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each
author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is
modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by
others will not reflect on the original authors' reputations. Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have
made it clear that any patent must be licensed for everyone's free use or not licensed at all. The precise terms and conditions for copying, distribution

186 of 193 List of Open Source Software Components Copyrights

and modification follow. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License applies to any program
or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The
"Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you". Activities other than
copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and
the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does. 1. You may copy and distribute verbatim copies of the Program's source code as
you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the
Program a copy of this License along with the Program. You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these
conditions: a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change. b) You
must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed
as a whole at no charge to all third parties under the terms of this License. c) If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an
appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the
program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not
normally print such an announcement, your work based on the Program is not required to print an announcement.) These requirements apply to the
modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this
License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not
the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program. In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of
this License. 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms
of Sections 1 and 2 above provided that you also do one of the following: a) Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, b)
Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing
source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2
above on a medium customarily used for software interchange; or, c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or
executable form with such an offer, in accord with Subsection b above.) The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code
distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so
on) of the operating system on which the executable runs, unless that component itself accompanies the executable. If distribution of executable or
object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same
place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code. 4. You
may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 5. You are not
required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its
derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any
work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or
modifying the Program or works based on it. 6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may
not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third
parties to this License. 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent
issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it
and this License would be to refrain entirely from distribution of the Program. If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances. It is
not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section
has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many
people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that
choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 8. If the distribution and/or
use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in
or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 9. The Free
Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If
the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number
of this License, you may choose any version ever published by the Free Software Foundation. 10. If you wish to incorporate parts of the Program into
other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the
Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO
WARRANTY 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE
EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE
LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS

JPEG Software License: Thomas G. Lane - JPEG Group

Copyright (C) 1991-1995, Thomas G. Lane. (https://jpegclub.org/reference/libjpeg-license/) This file is part of the Independent JPEG Group's
software. For conditions of distribution and use, see the accompanying README file. This file defines the application interface for the JPEG library.
Most applications using the library need only include this file, and perhaps jerror.h if they want to know the exact error codes. LICENSE TERMS
(ships as a part of the libjpeg package in the README file) ============= 1. We don't promise that this software works. (But if you find any bugs,
please let us know!) 2. You can use this software for whatever you want. You don't have to pay us. 3. You may not pretend that you wrote this
software. If you use it in a program, you must acknowledge somewhere in your documentation that you've used the IJG code. In legalese: The
authors make NO WARRANTY or representation, either express or implied, with respect to this software, its quality, accuracy, merchantability, or
fitness for a particular purpose. This software is provided "AS IS", and you, its user, assume the entire risk as to its quality and accuracy. This
software is copyright (C) 1991-2016, Thomas G. Lane, Guido Vollbeding. All Rights Reserved except as specified below. Permission is hereby
granted to use, copy, modify, and distribute this software (or portions thereof) for any purpose, without fee, subject to these conditions: (1) If any part
of the source code for this software is distributed, then this README file must be included, with this copyright and no-warranty notice unaltered; and
any additions, deletions, or changes to the original files must be clearly indicated in accompanying documentation. (2) If only executable code is
distributed, then the accompanying documentation must state that "this software is based in part on the work of the Independent JPEG Group". (3)
Permission for use of this software is granted only if the user accepts full responsibility for any undesirable consequences; the authors accept NO
LIABILITY for damages of any kind. These conditions apply to any software derived from or based on the IJG code, not just to the unmodified library.

Copyrights 187 of 193

If you use our work, you ought to acknowledge us. Permission is NOT granted for the use of any IJG author's name or company name in advertising
or publicity relating to this software or products derived from it. This software may be referred to only as "the Independent JPEG Group's software".
We specifically permit and encourage the use of this software as the basis of commercial products, provided that all warranty or liability claims are
assumed by the product vendor.

Resizable Elements Software License: Paolo Messina

Copyright (C) 2000-2002 by Paolo Messina (http://www.geocities.com/ppescher - ppescher@yahoo.com) The contents of this file are subject to the
Artistic License (the "License"). You may not use this file except in compliance with the License. You may obtain a copy of the License at:
https://opensource.org/license/artistic-license-2-0-php/ If you find this code useful, credits would be nice! SPDX short identifier: Artistic-2.0 Copyright
(c) 2000-2006, The Perl Foundation. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not
allowed. Preamble This license establishes the terms under which a given free software Package may be copied, modified, distributed, and/or
redistributed. The intent is that the Copyright Holder maintains some artistic control over the development of that Package while still keeping the
Package available as open source and free software. You are always permitted to make arrangements wholly outside of this license directly with the
Copyright Holder of a given Package. If the terms of this license do not permit the full use that you propose to make of the Package, you should
contact the Copyright Holder and seek a different licensing arrangement. Definitions “Copyright Holder” means the individual(s) or organization(s)
named in the copyright notice for the entire Package. “Contributor” means any party that has contributed code or other material to the Package, in
accordance with the Copyright Holder’s procedures. “You” and “your” means any person who would like to copy, distribute, or modify the Package.
“Package” means the collection of files distributed by the Copyright Holder, and derivatives of that collection and/or of those files. A given Package
may consist of either the Standard Version, or a Modified Version. “Distribute” means providing a copy of the Package or making it accessible to
anyone else, or in the case of a company or organization, to others outside of your company or organization. “Distributor Fee” means any fee that you
charge for Distributing this Package or providing support for this Package to another party. It does not mean licensing fees. “Standard Version” refers
to the Package if it has not been modified, or has been modified only in ways explicitly requested by the Copyright Holder. “Modified Version” means
the Package, if it has been changed, and such changes were not explicitly requested by the Copyright Holder. “Original License” means this Artistic
License as Distributed with the Standard Version of the Package, in its current version or as it may be modified by The Perl Foundation in the future.
“Source” form means the source code, documentation source, and configuration files for the Package. Compiled” form means the compiled bytecode,
object code, binary, or any other form resulting from mechanical transformation or translation of the Source form. Permission for Use and Modification
Without Distribution (1) You are permitted to use the Standard Version and create and use Modified Versions for any purpose without restriction,
provided that you do not Distribute the Modified Version. Permissions for Redistribution of the Standard Version (2) You may Distribute verbatim
copies of the Source form of the Standard Version of this Package in any medium without restriction, either gratis or for a Distributor Fee, provided
that you duplicate all of the original copyright notices and associated disclaimers. At your discretion, such verbatim copies may or may not include a
Compiled form of the Package. (3) You may apply any bug fixes, portability changes, and other modifications made available from the Copyright
Holder. The resulting Package will still be considered the Standard Version, and as such will be subject to the Original License. Distribution of
Modified Versions of the Package as Source (4) You may Distribute your Modified Version as Source (either gratis or for a Distributor Fee, and with
or without a Compiled form of the Modified Version) provided that you clearly document how it differs from the Standard Version, including, but not
limited to, documenting any non-standard features, executables, or modules, and provided that you do at least ONE of the following: (a) make the
Modified Version available to the Copyright Holder of the Standard Version, under the Original License, so that the Copyright Holder may include your
modifications in the Standard Version. (b) ensure that installation of your Modified Version does not prevent the user installing or running the
Standard Version. In addition, the Modified Version must bear a name that is different from the name of the Standard Version. (c) allow anyone who
receives a copy of the Modified Version to make the Source form of the Modified Version available to others under (i) the Original License or (ii) a
license that permits the licensee to freely copy, modify and redistribute the Modified Version using the same licensing terms that apply to the copy
that the licensee received, and requires that the Source form of the Modified Version, and of any works derived from it, be made freely available in
that license fees are prohibited but Distributor Fees are allowed. Distribution of Compiled Forms of the Standard Version or Modified Versions without
the Source (5) You may Distribute Compiled forms of the Standard Version without the Source, provided that you include complete instructions on
how to get the Source of the Standard Version. Such instructions must be valid at the time of your distribution. If these instructions, at any time while
you are carrying out such distribution, become invalid, you must provide new instructions on demand or cease further distribution. If you provide valid
instructions or cease distribution within thirty days after you become aware that the instructions are invalid, then you do not forfeit any of your rights
under this license. (6) You may Distribute a Modified Version in Compiled form without the Source, provided that you comply with Section 4 with
respect to the Source of the Modified Version. Aggregating or Linking the Package (7) You may aggregate the Package (either the Standard Version
or Modified Version) with other packages and Distribute the resulting aggregation provided that you do not charge a licensing fee for the Package.
Distributor Fees are permitted, and licensing fees for other components in the aggregation are permitted. The terms of this license apply to the use
and Distribution of the Standard or Modified Versions as included in the aggregation. (8) You are permitted to link Modified and Standard Versions
with other works, to embed the Package in a larger work of your own, or to build stand-alone binary or bytecode versions of applications that include
the Package, and Distribute the result without restriction, provided the result does not expose a direct interface to the Package. Items That are Not
Considered Part of a Modified Version (9) Works (including, but not limited to, modules and scripts) that merely extend or make use of the Package,
do not, by themselves, cause the Package to be a Modified Version. In addition, such works are not considered parts of the Package itself, and are
not subject to the terms of this license. General Provisions (10) Any use, modification, and distribution of the Standard or Modified Versions is
governed by this Artistic License. By using, modifying or distributing the Package, you accept this license. Do not use, modify, or distribute the
Package, if you do not accept this license. (11) If your Modified Version has been derived from a Modified Version made by someone other than you,
you are nevertheless required to ensure that your Modified Version complies with the requirements of this license. (12) This license does not grant
you the right to use any trademark, service mark, tradename, or logo of the Copyright Holder. (13) This license includes the non-exclusive, worldwide,
free-of-charge patent license to make, have made, use, offer to sell, sell, import and otherwise transfer the Package with respect to any patent claims
licensable by the Copyright Holder that are necessarily infringed by the Package. If you institute patent litigation (including a cross-claim or
counterclaim) against any party alleging that the Package constitutes direct or contributory patent infringement, then this Artistic License to you shall
terminate on the date that such litigation is filed. (14) Disclaimer of Warranty: THE PACKAGE IS PROVIDED BY THE COPYRIGHT HOLDER AND
CONTRIBUTORS “AS IS’ AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES. THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT ARE DISCLAIMED TO THE EXTENT PERMITTED BY YOUR LOCAL LAW.
UNLESS REQUIRED BY LAW, NO COPYRIGHT HOLDER OR CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES ARISING IN ANY WAY OUT OF THE USE OF THE PACKAGE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

VB2PY Software License: Paul Paterson
Copyright (c) 2003, Paul Paterson All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution. Neither the name of the vb2Py Project nor the names of its contributors may
be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY
THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CSPGen Software License: Sun Microsystems, Inc.
Copyright (c) 2006, Sun Microsystems, Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the Sun Microsystems, Inc. nor the names
of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE
IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

188 of 193 List of Open Source Software Components Copyrights

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

TreePropSheet Software License: Yves Tkaczyk

Copyright (C) 2004 by Yves Tkaczyk (http://www.tkaczyk.net - yves@tkaczyk.net) The contents of this file are subject to the Artistic License (the
"License"). You may not use this file except in compliance with the License. You may obtain a copy of the License at:
https://opensource.org/license/artistic-license-2-0-php/ SPDX short identifier: Artistic-2.0 Copyright (c) 2000-2006, The Perl Foundation. Everyone is
permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble This license establishes the terms
under which a given free software Package may be copied, modified, distributed, and/or redistributed. The intent is that the Copyright Holder
maintains some artistic control over the development of that Package while still keeping the Package available as open source and free software.
You are always permitted to make arrangements wholly outside of this license directly with the Copyright Holder of a given Package. If the terms of
this license do not permit the full use that you propose to make of the Package, you should contact the Copyright Holder and seek a different
licensing arrangement. Definitions “Copyright Holder” means the individual(s) or organization(s) named in the copyright notice for the entire Package.
“Contributor” means any party that has contributed code or other material to the Package, in accordance with the Copyright Holder’s procedures.
“You” and “your” means any person who would like to copy, distribute, or modify the Package. “Package” means the collection of files distributed by
the Copyright Holder, and derivatives of that collection and/or of those files. A given Package may consist of either the Standard Version, or a
Modified Version. “Distribute” means providing a copy of the Package or making it accessible to anyone else, or in the case of a company or
organization, to others outside of your company or organization. “Distributor Fee” means any fee that you charge for Distributing this Package or
providing support for this Package to another party. It does not mean licensing fees. “Standard Version” refers to the Package if it has not been
modified, or has been modified only in ways explicitly requested by the Copyright Holder. “Modified Version” means the Package, if it has been
changed, and such changes were not explicitly requested by the Copyright Holder. “Original License” means this Artistic License as Distributed with
the Standard Version of the Package, in its current version or as it may be modified by The Perl Foundation in the future. “Source” form means the
source code, documentation source, and configuration files for the Package. “Compiled” form means the compiled bytecode, object code, binary, or
any other form resulting from mechanical transformation or translation of the Source form. Permission for Use and Modification Without Distribution
(1) You are permitted to use the Standard Version and create and use Modified Versions for any purpose without restriction, provided that you do not
Distribute the Modified Version. Permissions for Redistribution of the Standard Version (2) You may Distribute verbatim copies of the Source form of
the Standard Version of this Package in any medium without restriction, either gratis or for a Distributor Fee, provided that you duplicate all of the
original copyright notices and associated disclaimers. At your discretion, such verbatim copies may or may not include a Compiled form of the
Package. (3) You may apply any bug fixes, portability changes, and other modifications made available from the Copyright Holder. The resulting
Package will still be considered the Standard Version, and as such will be subject to the Original License. Distribution of Modified Versions of the
Package as Source (4) You may Distribute your Modified Version as Source (either gratis or for a Distributor Fee, and with or without a Compiled
form of the Modified Version) provided that you clearly document how it differs from the Standard Version, including, but not limited to, documenting
any non-standard features, executables, or modules, and provided that you do at least ONE of the following: (a) make the Modified Version available
to the Copyright Holder of the Standard Version, under the Original License, so that the Copyright Holder may include your modifications in the
Standard Version. (b) ensure that installation of your Modified Version does not prevent the user installing or running the Standard Version. In
addition, the Modified Version must bear a name that is different from the name of the Standard Version. (c) allow anyone who receives a copy of the
Modified Version to make the Source form of the Modified Version available to others under (i) the Original License or (ii) a license that permits the
licensee to freely copy, modify and redistribute the Modified Version using the same licensing terms that apply to the copy that the licensee received,
and requires that the Source form of the Modified Version, and of any works derived from it, be made freely available in that license fees are
prohibited but Distributor Fees are allowed. Distribution of Compiled Forms of the Standard Version or Modified Versions without the Source (5) You
may Distribute Compiled forms of the Standard Version without the Source, provided that you include complete instructions on how to get the Source
of the Standard Version. Such instructions must be valid at the time of your distribution. If these instructions, at any time while you are carrying out
such distribution, become invalid, you must provide new instructions on demand or cease further distribution. If you provide valid instructions or cease
distribution within thirty days after you become aware that the instructions are invalid, then you do not forfeit any of your rights under this license. (6)
You may Distribute a Modified Version in Compiled form without the Source, provided that you comply with Section 4 with respect to the Source of
the Modified Version. Aggregating or Linking the Package (7) You may aggregate the Package (either the Standard Version or Modified Version) with
other packages and Distribute the resulting aggregation provided that you do not charge a licensing fee for the Package. Distributor Fees are
permitted, and licensing fees for other components in the aggregation are permitted. The terms of this license apply to the use and Distribution of the
Standard or Modified Versions as included in the aggregation. (8) You are permitted to link Modified and Standard Versions with other works, to
embed the Package in a larger work of your own, or to build stand-alone binary or bytecode versions of applications that include the Package, and
Distribute the result without restriction, provided the result does not expose a direct interface to the Package. Items That are Not Considered Part of a
Modified Version (9) Works (including, but not limited to, modules and scripts) that merely extend or make use of the Package, do not, by themselves,
cause the Package to be a Modified Version. In addition, such works are not considered parts of the Package itself, and are not subject to the terms
of this license. General Provisions (10) Any use, modification, and distribution of the Standard or Modified Versions is governed by this Artistic
License. By using, modifying or distributing the Package, you accept this license. Do not use, modify, or distribute the Package, if you do not accept
this license. (11) If your Modified Version has been derived from a Modified Version made by someone other than you, you are nevertheless required
to ensure that your Modified Version complies with the requirements of this license. (12) This license does not grant you the right to use any
trademark, service mark, tradename, or logo of the Copyright Holder. (13) This license includes the non-exclusive, worldwide, free-of-charge patent
license to make, have made, use, offer to sell, sell, import and otherwise transfer the Package with respect to any patent claims licensable by the
Copyright Holder that are necessarily infringed by the Package. If you institute patent litigation (including a cross-claim or counterclaim) against any
party alleging that the Package constitutes direct or contributory patent infringement, then this Artistic License to you shall terminate on the date that
such litigation is filed. (14) Disclaimer of Warranty: THE PACKAGE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS “AS IS’
AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES. THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT ARE DISCLAIMED TO THE EXTENT PERMITTED BY YOUR LOCAL LAW. UNLESS
REQUIRED BY LAW, NO COPYRIGHT HOLDER OR CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES ARISING IN ANY WAY OUT OF THE USE OF THE PACKAGE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Avalon Dock Software License: Dirkster99/AvalonDock
Ms-PL Microsoft Public License (Ms-PL) This license governs use of the accompanying software. If you use the software, you accept this license. If
you do not accept the license, do not use the software. 1. Definitions The terms "reproduce," "reproduction," "derivative works," and "distribution"
have the same meaning here as under U.S. copyright law. A "contribution" is the original software, or any additions or changes to the software. A
"contributor" is any person that distributes its contribution under this license. "Licensed patents" are a contributor's patent claims that read directly on
its contribution. 2. Grant of Rights (A) Copyright Grant- Subject to the terms of this license, including the license conditions and limitations in section
3, each contributor grants you a non-exclusive, worldwide, royalty-free copyright license to reproduce its contribution, prepare derivative works of its
contribution, and distribute its contribution or any derivative works that you create. (B) Patent Grant- Subject to the terms of this license, including the
license conditions and limitations in section 3, each contributor grants you a non-exclusive, worldwide, royalty-free license under its licensed patents
to make, have made, use, sell, offer for sale, import, and/or otherwise dispose of its contribution in the software or derivative works of the contribution
in the software. 3. Conditions and Limitations (A) No Trademark License- This license does not grant you rights to use any contributors' name, logo,
or trademarks. (B) If you bring a patent claim against any contributor over patents that you claim are infringed by the software, your patent license
from such contributor to the software ends automatically. (C) If you distribute any portion of the software, you must retain all copyright, patent,
trademark, and attribution notices that are present in the software. (D) If you distribute any portion of the software in source code form, you may do so
only under this license by including a complete copy of this license with your distribution. If you distribute any portion of the software in compiled or
object code form, you may only do so under a license that complies with this license. (E) The software is licensed "as-is." You bear the risk of using it.
The contributors give no express warranties, guarantees or conditions. You may have additional consumer rights under your local laws which this
license cannot change. To the extent permitted under your local laws, the contributors exclude the implied warranties of merchantability, fitness for a
particular purpose and non-infringement.

Python Software License: Python Software Foundation
PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2 1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"),
and the Individual or Organization ("Licensee") accessing and otherwise using this software ("Python") in source or binary form and its associated
documentation. 2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive, royalty-free, world-
wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative works, distribute, and otherwise use Python alone or in
any derivative version, provided, however, that PSF's License Agreement and PSF's notice of copyright, i.e., "Copyright (c) 2001, 2002, 2003, 2004,
2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022 Python Software Foundation; All

Copyrights 189 of 193

Rights Reserved" are retained in Python alone or in any derivative version prepared by Licensee. 3. In the event Licensee prepares a derivative work
that is based on or incorporates Python or any part thereof, and wants to make the derivative work available to others as provided herein, then
Licensee hereby agrees to include in any such work a brief summary of the changes made to Python. 4. PSF is making Python available to Licensee
on an "AS IS" basis. PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE OR THAT THE USE OF PYTHON WILL NOT INFRINGE ANY THIRD PARTY RIGHTS. 5. PSF SHALL NOT BE LIABLE
TO LICENSEE OR ANY OTHER USERS OF PYTHON FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A
RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON, OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE
POSSIBILITY THEREOF. 6. This License Agreement will automatically terminate upon a material breach of its terms and conditions. 7. Nothing in
this License Agreement shall be deemed to create any relationship of agency, partnership, or joint venture between PSF and Licensee. This License
Agreement does not grant permission to use PSF trademarks or trade name in a trademark sense to endorse or promote products or services of
Licensee, or any third party. 8. By copying, installing or otherwise using Python, Licensee agrees to be bound by the terms and conditions of this
License Agreement.

SQLite Consortium: SQLite Is Public Domain
All of the code and documentation in SQLite has been dedicated to the public domain by the authors. All code authors, and representatives of the
companies they work for, have signed affidavits dedicating their contributions to the public domain and originals of those signed affidavits are stored
in a firesafe at the main offices of Hwaci. All contibutors are citizens of countries that allow creative works to be dedicated into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or distribute the original SQLite code, either in source code form or as a compiled binary,
for any purpose, commercial or non-commercial, and by any means. The previous paragraph applies to the deliverable code and documentation in
SQLite - those parts of the SQLite library that you actually bundle and ship with a larger application. Some scripts used as part of the build process
(for example the "configure" scripts generated by autoconf) might fall under other open-source licenses. Nothing from these build scripts ever reaches
the final deliverable SQLite library, however, and so the licenses associated with those scripts should not be a factor in assessing your rights to copy
and use the SQLite library. All of the deliverable code in SQLite has been written from scratch. No code has been taken from other projects or from
the open internet. Every line of code can be traced back to its original author, and all of those authors have public domain dedications on file. So the
SQLite code base is clean and is uncontaminated with licensed code from other projects. The author of the 'Public Domain' - Software 'SQLite' is:
Hipp, Wyrick & Company, Inc. 6200 Maple Cove Lane, Charlotte, NC 28269 USA +1.704.948.4565 www.hwaci.com

MDFLib Software License: Michael Bührer & Bernd Sparrer
Copyright 2011 Michael Bührer & Bernd Sparrer. All rights reserved. Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY Michael Bührer
& Bernd Sparrer ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Michael Bührer OR Bernd
Sparrer OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the
authors and should not be interpreted as representing official policies, either expressed or implied, of Michael Bührer & Bernd Sparrer.

GreenWaves GAP8 IoT Register Definition License:
GreenWaves Technologies SAS

Copyright (c) 2017 GreenWaves Technologies SAS All rights reserved. Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of GreenWaves
Technologies SAS nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior
written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Kinetis FLASH Driver License: Freescale Semiconductor,
Inc.
(c) Copyright 2010-2014 Freescale Semiconductor, Inc. | Freescale Semiconductor License ALL RIGHTS RESERVED. Redistribution and use in

source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code
must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither
the name of the <organization> nor the names of its contributors may be used to endorse or promote products derived from this software without
specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

190 of 193 Index

Index

µ
µC/OS-II

Awareness 170
Task Trace 170

3
3Pin 14, 27, 104

A
A2L File Support 171
Add-In

Activating and Using 173
Removing 173

Alias names 118
Architecture of UDE 98
ARM HSSTP 135
Array Chart

Basic features 126
Local Menu 127
Using Expressions 126, 127

ASC 14, 24, 26, 104
Assembler 112
AURIX 48, 49, 58, 62, 72, 76, 82, 85, 102
Aurora 17, 134, 135, 137
Automation 48, 179

B
Binary Data 101
Binary loading 51, 65, 77, 101, 107
Blocking Memory Access 160
BMI header 68
Breakpoints 54

Absolute 120
Code 122
Condition 121, 122
Data 122
Data Breakpoints 121
Hardware 121
Identifier 123
Loop 122
Macro 122
Software 121
Window 121

BSL 24, 26, 27

C
C166 91

C167 48
Call Graph Analysis 130
Call Stack 130
CAN 14, 24, 26, 104
CAN Recorder 163
CD Browser 19
Code Coverage 147
Command line 101
Communication Channels

3Pin 27
3Pin Communication 104
ASC 24, 26, 104
CAN 24, 26, 104
COP 104
DAP 104
Debug Extender 25
Debug Pod 30
Ethernet 32
JTAG 23, 104
OCDS L1 23
OnCE 104
SSC 24, 26, 104
SWD 104

Compiler
ARM11 103
ARM7 103
ARM9 103
AURIX 102
C166 102
C166S-V2 102
C16x 102
Cortex 103
PowerArchitecture 102
PowerPC 102
Support 102
TriCore 102
XC166 102
XC2000 102
XE166 102
XScale 103

Connect the Target 106
COP 104
Copyrights 185
Core Registers 55, 112, 113
Coresight 150, 151
Cortex 48
Creating new Workspace 49, 60, 100

D
DAP 14, 23, 25, 28, 30, 104
Data Trace Chart 151
Debug Information 101
Debug/Trace Pod configuration 49
Debugging

AURIX 49, 62
C166S V2 87
Multi-Core 60
PowerArchitecture 89
PowerPC 89, 91
PPU 72
XCP 58

Delivery Contents 15
Download

Index 191 of 193

Multi-core 107
Multi-program 107

Download from Website 19
Downloading a Binary File 101
Downloading the latest UDE Version 45, 47
Downloads from the Website 20
Driver

Certificate 34
UAD2+ 34
UAD2next 34
UAD2pro 34
UAD3+ 34
USB-Key 40

E
Eclipse 174

Debug Configuration 175
Integration Package 17, 174
Launch 175
Mars 175
Neon 175
Oxygen 175
Photon 175
Version 4.x 174

Electrical Safety Instructions 11
ELF 101
Enabling FLASH Programming 160
ESD 22
ETB 150, 151
Ethernet 26, 27, 28, 29, 30, 31, 32, 37
ETM 14, 150, 151
Event Marker 151
Examples 48
Execution Sequence Chart 150
Expression Clipboard

Add Expression 118
External FLASH 159

F
FAQs 47
Find All in Trace 154
Firewire 17
Firmware Update 34
FLASH

Concept 156
Configuration 95, 162
Program Time Mapping 158
Programming 156, 161
Remap settings 67
Run Time Mapping 158
Safe BMI header 68
UCB header 68

Following the Program flow 120
FreeRTOS

Awareness 166
Task Trace 166

Frequently Asked Questions 47
Function static Variable 117
Functions 109

G
Getting Started 48
Global Variable 116

GNU 102
Greenhills 102, 103
GTM 76

H
Help

On-line Help 99
HEX 101
Hex File 103
HighTec 102
Host ID 42

I
IEEE1394 17, 25, 26, 27, 34
IEEE1394b 30, 31, 35
ImageCraft 103
Init command 75
Inline Assembler 112
Installing

Hardware 22
Software 19
UAD2+ 34
UAD2next 34
UAD2pro 34
UAD3+ 34
USB-Key 40

Intel 101
Intel Hex 103
Interface 17

J
JTAG 14, 23, 25, 28, 30, 89, 104

Protector 33

K
Keil 102
Known Issues 47

L
Leaving the Project 57
License Manager 41
License Node-locked 42
Loading of an Executable 51, 65, 77
Locals 119
Login in the website 19

M
Macro 122
Marker 151, 154
MaxSim 14
MCDS 82, 135, 137, 150, 151
MDK 103
Mechanical Safety Instructions 12
Memory Access Filter 160
Memory View 57, 123
miniMCDS 85, 135, 137
Module static Variable 116
Monitor

ASC, SSC, CAN, 3Pin 104
RAM 104, 105
ROM 104, 106

Motorola 101
Motorola S 103

192 of 193 Index

MPC5567 89
Multi-core

Debugging 62
Download 107

Multi-program
Download 107

N
NEXUS 14, 135, 150, 151
Node-locked licensing 42

O
Object Model 48, 115, 179

Python 180
OCDS L1 14, 23, 25, 28, 30

Trigger 87
OCDS L2 14
OHCI 34
OnCE 104
On-chip FLASH 159
OUT 101
Overvoltage 22

P
PCI 17
PCP 60
Peripheral Registers 55, 113
Perspectives 65
PowerArchitecture 48, 89
PowerPC 48, 89

Trigger 90
PPU 72
Printing

Memory Locations 124
Program Code 111

Profiling
(stats) 142
(trace) 143
Configuration 142, 143
View 143

Program View 109
Project Management 99
Protection Settings 172
PXROS-HR

Awareness 168
Task Trace 169

Python 180
Python Script Add-In 181

R
rcX

Awareness 165
Real expressions 117
Real-Time Graphical Monitoring 127
RealView 103
Reference 183
Refresh 119
Regulatory Compliance 10
Reinstalling Software 45
Release 9
Reporting a problem 47
Requirements 17
RTX

Awareness 164
Run a Program 53, 61, 112

S
S32V234 48
Safe BMI header 68
SafeNet USB SuperPro 40
SAFERTOS

Awareness 167
Task Trace 167

Safety Instructions 10, 13
Samples 48
Scientific Chart

Array Chart 126
Time / Value Chart 127

Sections 109
Sentinel USB SuperPro 40
Signal Trace 127
Simulated I/O 125
Simulator 14, 32
Single-Chip Systems 157
Source

Code View Mode 110
File 109
File Management 51, 65, 78, 107
Path Replacement 52, 66, 78, 108

SPC58 76
SSC 14, 24, 26, 104
Stack 130
Starting UDE 49
Static Electricity Precautions 22
Stepping and Breakpoints 120
Stop the Program at a specified Location 120
SWD 14, 23, 25, 28, 30, 104
Symbol Information 101
Symbols 53, 70, 80, 109

loading 51, 65, 77, 107
System Requirements 17

T
Target Configuration 91

Select 100
Wizard 91

Target Interface
Controller 92
Select 92
Setup 93

Tasking 102
TCP/IP 37
Time / Value Chart 127

Real-Time Graphical Monitoring
Setting up 128, 129

Using Expressions 128
Time measuring

Timers 134
Trace 14, 17, 29, 31, 134

Analysing 134, 136
Configuration 130, 139, 145, 151, 152
Find 141
Find All 154
Multi-core View 83
Result Analysing 141
Signal 127

Index 193 of 193

Sources 134, 135
Triggered Transfer 155
View 82, 85, 137, 141
Visualization 134, 136

Trace Window Configuration 137
TriCore 48, 49, 60, 62, 76, 82, 85
Trigger 87, 90
Triggered Transfer Trace 155
Trouble Shooting 47
TSIM 14, 32

U
UAD2+ 25, 26, 27

JTAG Protector 33
UAD2next 28, 29

Trace 29
UAD2pro 23, 24
UAD3+ 30, 31

Debug/Trace Pod configuration 49
Trace 31

UCB header 68
UDE Object Model 115
UHCI 36
Uninstalling Software 45
Updates 9, 45, 47
USB 17, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 36,

40
USB-JTAG Adapter 17
User defined 182

V
Variables 56, 117
Versions of UDE

Simulator 14
Standard

UAD2+ 14
UAD2next 14
UAD2pro 14
UAD3+ 14

View Mode
Assembly 110
C/C++ 110
Disassembly 111
Mixed 110

Viewing and Modifying Registers 112
Viewing Program Code 109

W
Watch Expressions 116
Watches 116, 118

Advanced Expression Resolution 119
Expression 118
Expression Clipboard 118
Variable 118

Website Login 19
Windows

Call Stack 130
Code Coverage 147
Core Registers 55, 112, 113
Data Trace Chart 151
Execution Sequence Chart 150
HTML 113
Locals 119

MCDS 82, 83
Memory 57
miniMCDS 85
Multi-core Trace 83
Peripheral Registers 55, 113
Profiling

(stats) 142
(trace) 143

Program 109
Program Execution Time Measuring 134
Scientific Charts 126
Stack 130
Time / Value Chart 127
Trace 82, 85

View 137
Visualisation 134

Variables 56
Watches 116

Windows Security 34
Workspace 100, 109

X
XC166 48, 87
XC2000 48, 87
XCP 32, 58
XE166 87

	Introduction
	Overview
	Feedback
	Safety Instructions for Products and Equipment
	Regulatory Compliance and Compliance Statements
	Software
	Electrical Safety Instructions
	Mechanical Safety Instructions
	Safety Instructions

	Versions of UDE®
	Delivery Contents
	System Requirements
	Dependencies
	Additional requirements

	Installing of UDE® Universal Debug Engine
	Installation Notes - Before you install UDE®
	Installing UDE® Software
	Working with the CD browser
	Download the latest UDE® Release from Website
	Start the UDE® Installation

	Installing Hardware
	Static Electricity Precautions
	Standard Version UAD2pro (via JTAG/DAP/SWD)
	Standard Version UAD2pro (via ASC, CAN)
	Standard Version UAD2+ (via JTAG/DAP/SWD)
	Standard Version UAD2+ (via ASC, SSC, CAN)
	Standard Version UAD2+ (via 3Pin)
	Standard Version UAD2next (via JTAG/DAP/SWD)
	Standard Version UAD2next (with Trace support)
	Standard Version UAD3+ (via JTAG/DAP/SWD)
	Standard Version UAD3+ (with Aurora Trace support)
	Simulator Version (TSim)
	Standard Version XCP (via Ethernet))
	UAD-JTAG Protector 2 for UAD2+

	Driver Installation for Universal Access Device
	UAD2+ via IEEE1394
	UAD3+ via IEEE1394b
	UAD2pro, UAD2+, UAD2next, UAD3+ via USB port
	UAD2+, UAD2next, UAD3+ via Ethernet TCP/IP
	Connection methods
	Configuration of the IP address via Ethernet
	Configuration of the IP address via USB/IEEE1394

	Driver Installation for USB-Key (Sentinel USB SuperPro)
	USB-Key via USB port

	License Manager
	Node-locked licensing
	How to get the Host ID of UDE® Installation
	Obtain Host Identifier via UDE® License Manager
	Obtain Host Identifier via UDE® License Key Request Form
	Obtain Host Identifier via Script

	Setup of Node-Locked License File

	Uninstalling or Reinstalling UDE®
	Find out about the latest UDE® version
	Trouble Shooting
	Frequently Asked Questions (FAQ’s)
	Precautions when installing a new UDE® version
	Downloading the latest UDE® Version
	Reporting a Problem in UDE®
	Known Issues
	Installation fails
	UAD2/ UAD2+ does not enumerate at USB-Bus

	Getting Started
	Examples delivered with UDE®
	An Example with AURIX TC3xx
	Precautions
	Starting UDE® Universal Debug Engine
	Loading a AURIX Executable
	Binary and Symbols
	Source File Management
	Source Path Replacement
	Project management

	Running and Stepping through the Application
	Setting Breakpoints
	Core Registers
	Peripheral Registers
	Viewing Variables
	Viewing and changing global/static variables
	Watch tips
	Viewing and changing local variables

	Viewing Memory Locations
	Leaving the Project

	An Example with AURIX TC3xx via XCP
	Creating a new Workspace

	A Multi-Core Debugging Example with TriCore/PCP
	Creating a New Workspace with changed configuration
	Running the Program
	HelloPCP Internals

	A Multi-Core Debugging Example with AURIX TC2xx
	Understanding a Multi-Core Configuration
	Creating a New Workspace
	Preparing the Debugger
	Show, Hide and Group Windows-Related Perspectives
	Loading a Multi-Core Executable
	Source File Management
	Source Path Replacement

	FLASH programming
	Core Selection
	Single-Core Breakpoints in a multi-core environment
	Multi-Core Breakpoints

	An AURIX TC49x/PPU Debugging Example
	Preparations
	Getting Started
	Multi-Core Run Control
	Program Execution Time Measurement
	Additional hints for PPU debugging with breakpoints:

	A Multi-Core GTM Debugging Example with Power Architecture SPC58NG
	Creating a New Workspace
	Preparing the debugger
	Loading a Multi-Core Executable
	Source File Management
	Source Path Replacement

	Core selection
	Single-Core Breakpoints
	Multi-Core Breakpoints and Stepping
	Inspecting Multi-Channel-Sequencer (MCS) Channels

	Using the MCDS On-Chip Trace with AURIX TC2xx
	Preparations
	Recording the first Samples
	Hints for Multi-Core Trace

	Using miniMCDS Trace for AURIX TC2xx/TC3xx
	Preparations
	Recording the first Samples

	An Example with C166S V2 / XC2000 via JTAG/OCDS L1
	Starting with UDE® Universal Debug Engine
	Automatic Variables Refresh
	Trigger Functions

	An Example with MPC5567 via JTAG
	Starting with UDE® Universal Debug Engine
	Loading and Starting of an Executable
	Automatic Variables Refresh
	Trigger Functions
	Hints for using the MPC55xx via JTAG

	Creating hardware-specific Target Configurations
	Creating a new workspace
	Invoking the Wizard
	Selecting the Controller Derivative
	Selecting the Target Interface
	Setting up the Target Interface
	Configuring the FLASH memory
	Finish the Wizard

	Conclusion

	User's Guide
	Introduction
	Architecture of UDE® Universal Debug Engine
	Using On-line Help
	Project Management
	Working with Projects
	Creating a New Project
	Select Target Configuration
	Loading a Project
	Saving Project Settings
	Closing a Project
	Command line options of UDE®

	Preparing a binary File
	Compiler Support
	Compiler Support for C16x, XC166, XC2000, XE166
	Compiler Support for AURIX, TriCore
	Compiler Support for PowerArchitecture
	Compiler Support for Cortex, ARM7, ARM9, ARM11, XScale
	HexFile Support

	Connecting the target system
	Overview about Debug Communication Channels
	Communication Channel via JTAG, DAP, SWD, OnCE, COP interfaces
	Communication Channel via monitor-based ASC, SSC, CAN, 3Pin interfaces

	Preparing the Communication
	Create a new configuration
	Select a RAM based monitor program
	Select a ROM based monitor

	Connect the Target system
	Multi-Target Debugging

	Downloading a binary File
	Download a multi-core and multi-program Application
	Binary
	Symbols
	Hex/ELF
	Source File Management
	Source Path Replacement

	Viewing Program Code
	Workspace
	Header files / Other Source files
	Functions
	Sections
	Breakpoints
	Data Breakpoints

	Source Code Window
	C/C++ oriented view mode
	C/C++/Assembler mixed mode
	Disassembly (complete range) window mode
	Disassembly mode
	Printing of program code

	Running a program
	Inline Assembler
	Viewing and Modifying of Core Registers
	Kinds of Core Register windows
	Description of SFR, CSFR and GPR Registers
	Core Registers window
	Peripheral Registers window
	HTML window

	Core Registers window
	Changing the Core Register content
	Color coding

	Peripheral Registers View
	Creating or changing a Peripheral Registers window
	Changing the layout
	Changing the register content
	Saving and Restoring
	Color coding

	HTML View based on the UDE® Object Model

	Watching Variables
	Watches
	Watch Expressions
	Global Variable description
	Syntax
	Example

	Module static variable description
	Syntax
	Example

	Function static variable description
	Syntax
	Example

	Global, static variables and parts of it
	Syntax
	Examples

	Real expressions
	Syntax
	Examples

	Real expressions with alias name
	Description of watches content in a file
	Syntax description

	Adding Variables and Expressions using Select Watches Dialog
	Locals
	Automatic variable content refresh

	Stepping and Breakpoints
	Overview
	Following the program flow
	Stop the program at a specified location
	Absolute Breakpoints
	Conditional Breakpoints
	Data Breakpoints

	Breakpoints window
	Breakpoint identifier
	Syntax description

	Viewing Memory Locations
	Writing data to target
	Updating data from target
	Printing of memory locations

	Using the Simulated I/O channel
	Viewing Data as Scientific Charts
	Array Chart
	Using Expressions
	Array Chart Properties

	Time / Value Chart
	Using Expressions
	Using Modes
	Setting up Real-time Monitoring Display Mode
	Setting up Memory Locations Display Mode

	Viewing Call Stack
	Call Graph Analysis
	Enabling the Call Graph Analysis
	Configuring of Trace Configuration
	Using the Call Graph Analysis
	Dynamic Call Graph
	Static Call Graph
	Dynamic Node Call and Timing Value
	Static Node Call and Timing Value

	Program Execution Time Measuring
	Trace, Visualization and Analyzing
	System Level Debugging
	Trace Sources
	Trace Sources (cont’d)
	Trace Sources (cont’d)
	Trace Analyzing Features and Windows
	Trace Visualization and Analyzing
	Trace Visualization and Analyzing (cont’d)

	Trace Views
	Configuring the Trace Window
	Configuring of Trace Configuration
	Analyzing Results
	Identify Core related Messages
	Trace Buffer Find Dialog
	Switch to Source Code

	Profiling (stats)
	Configuring the Profiling (stats) Window

	Profiling (trace)
	Use of Trace Profiling Window
	Configuring of full Program Trace
	Configuring of MCDS Compact Function Trace

	Code Coverage
	Preparing the Trace Configuration
	Use of Code Coverage Window to evaluate the Coverage Results
	Use of Program Windows to evaluate the Statement Coverage Results

	Execution Sequence Chart
	Features of the Execution Sequence Chart
	Configuring of Trace Configuration
	Use of Execution Sequence Chart
	Event Marker

	Data Trace Chart
	Features of the Data Trace Chart
	Configuring of Trace Configuration
	Usage of Data Trace Charts

	Find All in Trace

	Triggered Transfer Recorder
	Setup

	FLASH / OTP Programming
	Supported Functions
	Basic Concept
	Target Communication
	Supported FLASH/OTP Memory Devices
	Memory mapping variants
	Run Time Mapping
	Program Time Mapping

	Definition of external FLASH Memories
	Create a new Target Configuration with FLASH support
	Edit an existing Target Configuration with FLASH support

	Definition of on-chip FLASH Memories
	Definition of Memory Access Filters
	Enabling the FLASH Programming
	FLASH Programming
	Setup FLASH Programming options

	CAN Recorder
	Enabling the UDE® CAN Recorder
	Send and Record CAN Messages

	RTX Awareness
	Enabling the RTX Awareness
	Using the RTX Awareness

	rcX Awareness
	Enabling the rcX Awareness
	Using the rcX Awareness

	FreeRTOS Awareness
	Enabling the FreeRTOS Awareness.
	FreeRTOS Task Trace
	Using the FreeRTOS Awareness

	SAFERTOS Awareness
	Enabling the SAFERTOS Awareness
	SAFERTOS Task Trace
	Using the SAFERTOS Awareness

	PXROS-HR Awareness
	Enabling the PXROS-HR Awareness
	PXROS-HR Task Trace
	Using the PXROS-HR Awareness

	µC/OS-II Awareness
	Enabling the µC/OS-II Awareness
	µC/OS-II Trace
	Using the µC/OS-II Awareness

	A2L File Support
	Using the A2L File Support

	Protection Settings
	Using Protection Settings

	Activating and Using Add-Ins
	Activating an Add-In
	Removing an Add-In

	Eclipse IDE for UDE®
	Supported Eclipse IDE Versions
	Prepare Eclipse IDE for UDE® Integration Package
	Install UDE® Eclipse Integration Package

	Launching UDE® Debug Session in Eclipse IDE
	Creating UDE® Eclipse Platform Launch Configuration
	Steps to start Debug Session with UDE® Eclipse Launch Configuration

	Add UDE® Sample Project to Eclipse C/C++ IDE
	Creating Eclipse Makefile Project from UDE® TimeDemo Sample

	UDE® Object Model
	Overview
	Automation Guide and Object Model Reference
	An external Script-Example for TriCore in Python

	Python Script Console
	Supported Functions
	Enabling the Python Script Console
	Accessing the UDE® object model

	User Definable Enhancements

	Reference
	Copyrights
	List of Open Source Software Components
	MCD Software License: ARM Ltd, Infineon Technologies, NXP, Lauterbach, STMicroelectronics, TIMA Laboratory
	Demangle Software License: Free Software Foundation
	JPEG Software License: Thomas G. Lane - JPEG Group
	Resizable Elements Software License: Paolo Messina
	VB2PY Software License: Paul Paterson
	CSPGen Software License: Sun Microsystems, Inc.
	TreePropSheet Software License: Yves Tkaczyk
	Avalon Dock Software License: Dirkster99/AvalonDock
	Python Software License: Python Software Foundation
	SQLite Consortium: SQLite Is Public Domain
	MDFLib Software License: Michael Bührer & Bernd Sparrer
	GreenWaves GAP8 IoT Register Definition License: GreenWaves Technologies SAS
	Kinetis FLASH Driver License: Freescale Semiconductor, Inc.

	Index

